示例#1
0
def main(dataset: str, target: str, symbol: str):
    ds_service = DatasetService()
    ds = ds_service.get_dataset(name=dataset, symbol=symbol)
    fs = DatasetService.get_feature_selection(ds=ds, method='importances_shap', target='class')
    # hierarchy = load_hierarchy(f"{dataset}_{target}_feature_hierarchy.yml", importances=fs.feature_importances)

    # hdf = pd.DataFrame(hierarchy)
    # fig = px.treemap(hdf, path=['category', 'subgroup', 'name'], values='importance')
    # fig.show()
    #
    # fig = px.sunburst(hdf, path=['category', 'subgroup', 'name'], values='importance')
    # fig.show()

    shap_values, shap_expected_values = parse_shap_values(fs.shap_values)
    X = ds_service.get_dataset_features(ds=ds, begin=fs.search_interval.begin, end=fs.search_interval.end)
    y = ds_service.get_target(name='class', symbol=symbol, begin=fs.search_interval.begin, end=fs.search_interval.end)
    fig = plt.figure()
    plt.suptitle(f"Shap summary plot for {dataset}.{symbol} -> {target}")
    shap.summary_plot(shap_values, X, class_names=["SELL", "HOLD", "BUY"], show=False, max_display=352, use_log_scale=True)
    plt.tight_layout()
    fig.show()

    shap_dfs = []
    for cls, arr in enumerate(shap_values):
        class_df = pd.DataFrame(arr, columns=X.columns, index=X.index)
        class_df.columns = [f"{c}_class{cls}" for c in class_df.columns]
        shap_dfs.append(class_df)
    shap_df = pd.concat(shap_dfs, axis='columns')
    shap_df = shap_df.reindex(sorted(shap_df.columns), axis=1)
    print(shap_df.head())
示例#2
0
def main(dataset: str, target: str, pipeline: str):
    shapes = []
    ds_service = DatasetService()
    m_service = ModelService()
    for symbol in SYMBOLS:
        print(f"Exporting shap dataframes for symbol {symbol}")
        ds = ds_service.get_dataset(name=dataset, symbol=symbol)
        fs = DatasetService.get_feature_selection(ds=ds,
                                                  method='importances_shap',
                                                  target=target)
        X_all = ds_service.get_dataset_features(ds=ds, columns=fs.features)
        y_all = ds_service.get_dataset_target(ds=ds, name=target)
        model = m_service.get_model(pipeline=pipeline,
                                    dataset=dataset,
                                    target=target,
                                    symbol=symbol)
        for t in model.tests:
            print(f"Loading estimators for test {t.window}")
            estimators = ModelService.load_test_estimators(model=model, mt=t)
            shaps = []
            print(f"Calculating shap values...")
            for est in tqdm(estimators):
                est_class = y_all.loc[est.day]
                shap_v, shap_exp = get_shap_values(estimator=est,
                                                   X=X_all.loc[est.day],
                                                   X_train=est.train_x,
                                                   bytes=False)
                df = pd.DataFrame([shap_v],
                                  index=[pd.to_datetime(est.day)],
                                  columns=X_all.columns)
                df['label'] = y_all.loc[est.day]
                df['shap_expected'] = shap_exp
                shaps.append(df)
            print("Exporting dataframe..")
            cdf = pd.concat(shaps, axis='index')
            os.makedirs(f"data/shap_values/{dataset}/{target}/{pipeline}/",
                        exist_ok=True)
            cdf.to_csv(
                f"data/shap_values/{dataset}/{target}/{pipeline}/shap_test_{symbol}_Wdays{t.window['days']}.csv",
                index_label='time')
            print("Exported.")
            # # Load day estimator
            # est = load_estimator()

        print(f"Plotted {symbol}")
示例#3
0
class GridSearchService:
    def __init__(self):
        self.model_repo = ModelRepository()
        self.model_service = ModelService()
        self.dataset_service = DatasetService()

    def create_parameters_search(self, model: Model, split: float,
                                 **kwargs) -> ModelParameters:
        ds = self.dataset_service.get_dataset(model.dataset, model.symbol)
        splits = DatasetService.get_train_test_split_indices(ds, split)

        # Features can either be a list of features to use, or a string
        #   If it is a string, and it is "latest", pick the latest
        features = kwargs.get('features')
        # if isinstance(features, str) and features == 'latest':
        #     if model.features:
        #         features = model.features[-1].features
        #     else:
        #         features = None
        if features:
            target = kwargs.get('target', 'class')
            mf = DatasetService.get_feature_selection(
                ds=ds, method=kwargs.get('features'), target=target)
            if not mf:
                raise MessageException(
                    f"Feature selection not found for {model.dataset}.{model.symbol} -> {target}!"
                )
            features = mf.features

        # Determine K for K-fold cross validation based on dataset's sample count
        # Train-test split for each fold is 80% train, the lowest training window for accurate results is 30 samples
        # so we need X samples where X is given by the proportion:
        #       30/0.8 = X/1; X= 30/0.8 = 37.5 ~ 40 samples per fold
        X = 40
        k = 5
        # If samples per fold with 5-fold CV are too low, use 3-folds
        if ds.count / k < X:
            k = 3
        # If samples are still too low, raise a value error
        if ds.count / k < X and not kwargs.get("permissive"):
            raise ValueError("Not enough samples to perform cross validation!")

        result = ModelParameters(cv_interval=splits['train'],
                                 cv_splits=k,
                                 task_key=kwargs.get('task_key', str(uuid4())),
                                 features=features or None)
        return result

    def _get_dataset_and_pipeline(self, model: Model, mp: ModelParameters,
                                  **kwargs):
        if not model.id:  # Make sure the task exists
            model = self.model_repo.create(model)
        if self.model_repo.exist_parameters(model.id, mp.task_key):
            logging.info("Model {} Grid search {} already executed!".format(
                model.id, mp.task_key))
            return mp

        # Load dataset
        X = self.dataset_service.get_features(model.dataset,
                                              model.symbol,
                                              mp.cv_interval.begin,
                                              mp.cv_interval.end,
                                              columns=mp.features)
        y = self.dataset_service.get_target(model.target, model.symbol,
                                            mp.cv_interval.begin,
                                            mp.cv_interval.end)

        unique, counts = np.unique(y, return_counts=True)
        if len(unique) < 2:
            logging.error(
                "[{}-{}-{}-{}]Training data contains less than 2 classes: {}".
                format(model.symbol, model.dataset, model.target,
                       model.pipeline, unique))
            raise MessageException(
                "Training data contains less than 2 classes: {}".format(
                    unique))
        logging.info("Dataset loaded: X {} y {} (unique: {})".format(
            X.shape, y.shape, unique))
        # Load pipeline
        pipeline_module = get_pipeline(model.pipeline)
        return pipeline_module, X, y

    def grid_search(self, model: Model, mp: ModelParameters,
                    **kwargs) -> ModelParameters:
        pipeline_module, X, y = self._get_dataset_and_pipeline(model, mp)
        tag = "{}-{}-{}-{}-{}" \
            .format(model.symbol, model.dataset, model.target, model.pipeline, dict_hash(mp.parameters))

        # Perform search
        if not kwargs.get('halving'):
            gscv = GridSearchCV(
                estimator=pipeline_module.estimator,
                param_grid=kwargs.get('parameter_grid',
                                      pipeline_module.PARAMETER_GRID),
                # cv=BlockingTimeSeriesSplit(n_splits=mp.cv_splits),
                cv=StratifiedKFold(n_splits=mp.cv_splits),
                scoring=get_precision_scorer(),
                verbose=kwargs.get("verbose", 0),
                n_jobs=kwargs.get("n_jobs", None),
                refit=False)
        else:
            gscv = HalvingGridSearchCV(
                estimator=pipeline_module.estimator,
                param_grid=kwargs.get('parameter_grid',
                                      pipeline_module.PARAMETER_GRID),
                factor=2,
                cv=BlockingTimeSeriesSplit(n_splits=mp.cv_splits),
                scoring=get_precision_scorer(),
                verbose=kwargs.get("verbose", 0),
                n_jobs=kwargs.get("n_jobs",
                                  cpu_count() / 2),
                refit=False,
                random_state=0)

        try:
            mp.start_at = get_timestamp()  # Log starting timestamp
            gscv.fit(X, y)
            mp.end_at = get_timestamp()  # Log ending timestamp
        except SplitException as e:
            logging.exception(
                "Model {} splitting yields single-class folds!\n{}".format(
                    tag, e.message))
            return mp  # Fit failed, don't save this.
        except ValueError as e:
            logging.exception("Model {} raised ValueError!\n{}".format(tag, e))
            return mp  # Fit failed, don't save this.

        # Collect results
        results_df = pd.DataFrame(gscv.cv_results_)

        # Update search request with results
        mp.parameter_search_method = 'halving_grid_search' if kwargs.get(
            'halving') else 'gridsearch'
        mp.parameters = gscv.best_params_
        mp.cv_results = results_df.to_dict()
        mp.result_file = 'cv_results-{}.csv'.format(tag)

        # Save grid search results on storage
        if kwargs.get('save', True):
            storage_service.upload_json_obj(mp.parameters,
                                            'grid-search-results',
                                            'parameters-{}.json'.format(tag))
            storage_service.save_df(results_df, 'grid-search-results',
                                    mp.result_file)
            # Update model with the new results
            self.model_repo.append_parameters(model.id, mp)

        return mp

    def random_search(self, model: Model, mp: ModelParameters,
                      **kwargs) -> ModelParameters:
        pipeline_module, X, y = self._get_dataset_and_pipeline(model, mp)
        tag = "{}-{}-{}-{}-{}" \
            .format(model.symbol, model.dataset, model.target, model.pipeline, dict_hash(mp.parameters))

        rscv = RandomizedSearchCV(estimator=pipeline_module.estimator,
                                  param_distributions=kwargs.get(
                                      'param_distributions',
                                      pipeline_module.PARAMETER_DISTRIBUTION),
                                  n_iter=kwargs.get('n_iter', 10),
                                  cv=StratifiedKFold(n_splits=mp.cv_splits),
                                  scoring=get_precision_scorer(),
                                  verbose=kwargs.get("verbose", 0),
                                  n_jobs=kwargs.get("n_jobs", None),
                                  refit=False,
                                  random_state=0)

        try:
            mp.start_at = get_timestamp()  # Log starting timestamp
            rscv.fit(X, y)
            mp.end_at = get_timestamp()  # Log ending timestamp
        except SplitException as e:
            logging.exception(
                "Model {} splitting yields single-class folds!\n{}".format(
                    tag, e.message))
            return mp  # Fit failed, don't save this.
        except ValueError as e:
            logging.exception("Model {} raised ValueError!\n{}".format(tag, e))
            return mp  # Fit failed, don't save this.

        # Collect results
        results_df = pd.DataFrame(rscv.cv_results_)

        # Update search request with results
        mp.parameter_search_method = 'randomsearch'
        mp.parameters = rscv.best_params_
        mp.result_file = 'cv_results-{}.csv'.format(tag)

        # Save grid search results on storage
        if kwargs.get('save', True):
            storage_service.upload_json_obj(mp.parameters,
                                            'random-search-results',
                                            'parameters-{}.json'.format(tag))
            storage_service.save_df(results_df, 'random-search-results',
                                    mp.result_file)
            # Update model with the new results
            self.model_repo.append_parameters(model.id, mp)

        return mp

    def grid_search_new(self, symbol: str, dataset: str, target: str,
                        pipeline: str, split: float,
                        feature_selection_method: str, **kwargs):
        # Check if a model exists and has same search method
        existing_model = self.model_service.get_model(pipeline=pipeline,
                                                      dataset=dataset,
                                                      target=target,
                                                      symbol=symbol)
        if existing_model:
            mp_exists = ModelService.get_model_parameters(existing_model,
                                                          method='gridsearch')
            if mp_exists:
                if kwargs.get('replace'):
                    self.model_service.remove_parameters(model=existing_model,
                                                         method='gridsearch')
                else:
                    if kwargs.get('save'):
                        raise MessageException(
                            f"Grid search already performed for {pipeline}({dataset}.{symbol}) -> {target}"
                        )

        # Retrieve dataset to use
        ds = self.dataset_service.get_dataset(dataset, symbol)

        # Determine cv_splits=K for K-fold cross validation based on dataset's sample count
        # Train-test split for each fold is 80% train, the lowest training window for accurate results is 30 samples
        # so we need X samples where X is given by the proportion:
        #       30/0.8 = X/1; X= 30/0.8 = 37.5 ~ 40 samples per fold
        X = 40
        cv_splits = 5
        # If samples per fold with 5-fold CV are too low, use 3-folds
        if ds.count / cv_splits < X:
            cv_splits = 3
        # If samples are still too low, raise a value error
        if ds.count / cv_splits < X and not kwargs.get("permissive"):
            raise ValueError("Not enough samples to perform cross validation!")

        # Determine split indices based on dataset
        splits = DatasetService.get_train_test_split_indices(ds, split)
        cv_interval = splits['train']

        # Load dataset features by applying a specified feature selection method
        X = self.dataset_service.get_dataset_features(
            ds=ds,
            begin=cv_interval['begin'],
            end=cv_interval['end'],
            method=feature_selection_method,
            target=target)
        y = self.dataset_service.get_target(
            name=target,
            symbol=symbol,
            begin=cv_interval['begin'],
            end=cv_interval['end'],
        )

        # Check number of samples for each class in training data, if less than 3 instances are present for
        # each class, we're going to get a very unstable model (or no model at all for k-NN based algos)
        unique, counts = np.unique(y, return_counts=True)
        if len(unique) < 2:
            logging.error(
                "[{}-{}-{}-{}]Training data contains less than 2 classes: {}".
                format(symbol, dataset, target, pipeline, unique))
            raise MessageException(
                "Training data contains less than 2 classes: {}".format(
                    unique))
        logging.info("Dataset loaded: X {} y {} (unique: {})".format(
            X.shape, y.shape, unique))

        # Load pipeline algorithm and parameter grid
        pipeline_module = get_pipeline(pipeline)

        # Perform search
        gscv = GridSearchCV(
            estimator=pipeline_module.estimator,
            param_grid=kwargs.get('parameter_grid',
                                  pipeline_module.PARAMETER_GRID),
            # cv=BlockingTimeSeriesSplit(n_splits=mp.cv_splits),
            cv=StratifiedKFold(n_splits=cv_splits),
            scoring=get_precision_scorer(),
            verbose=kwargs.get("verbose", 0),
            n_jobs=kwargs.get("n_jobs", None),
            refit=False)

        mp = ModelParameters(cv_interval=splits['train'],
                             cv_splits=cv_splits,
                             task_key=kwargs.get('task_key', str(uuid4())),
                             features=[c for c in X.columns],
                             parameter_search_method='gridsearch')

        mp.start_at = get_timestamp()
        gscv.fit(X, y)
        mp.end_at = get_timestamp()

        # Collect results
        results_df = pd.DataFrame(gscv.cv_results_)

        mp.parameters = gscv.best_params_
        mp.cv_results = results_df.loc[:,
                                       results_df.columns != 'params'].to_dict(
                                           'records')

        tag = "{}-{}-{}-{}-{}".format(symbol, dataset, target, pipeline,
                                      dict_hash(mp.parameters))
        mp.result_file = 'cv_results-{}.csv'.format(tag)

        # Is there an existing model for this search?

        model = Model(pipeline=pipeline,
                      dataset=dataset,
                      target=target,
                      symbol=symbol,
                      features=feature_selection_method)
        model.parameters.append(mp)
        self.model_repo.create(model)

        # Save grid search results on storage
        if kwargs.get('save', True):
            storage_service.upload_json_obj(mp.parameters,
                                            'grid-search-results',
                                            'parameters-{}.json'.format(tag))
            storage_service.save_df(results_df, 'grid-search-results',
                                    mp.result_file)
        return mp
def main(dataset: str, target: str):
    num_shap_plots = 3
    shap_show_count = 10

    ds_service = DatasetService()
    m_service = ModelService()
    for pipeline in PIPELINES:
        for symbol in SYMBOLS:
            print(
                f"Plotting shap dataframes for pipeline {pipeline} symbol {symbol}"
            )
            ds = ds_service.get_dataset(name=dataset, symbol=symbol)
            fs = DatasetService.get_feature_selection(
                ds=ds, method='importances_shap', target=target)
            X_all = ds_service.get_dataset_features(ds=ds, columns=fs.features)
            y_all = ds_service.get_dataset_target(ds=ds, name=target)
            model = m_service.get_model(pipeline=pipeline,
                                        dataset=dataset,
                                        target=target,
                                        symbol=symbol)
            for t in model.tests:
                placeholder = "{label}"
                csv_name = f"data/shap_values/{dataset}/{target}/{pipeline}/shap_training_window_{symbol}_{placeholder}_Wdays{t.window['days']}_.csv"
                expected_csv_name = csv_name.format(label='SHAP_expected')
                print(f"Loading results for test {t.window}")
                results = ModelService.parse_test_results(test=t)
                exp_shap_df = pd.read_csv(expected_csv_name,
                                          index_col='time',
                                          parse_dates=True)
                for cls, label in enumerate(["SELL", "HOLD", "BUY"]):
                    class_csv_name = csv_name.format(label=label)
                    cls_shap_df = pd.read_csv(class_csv_name,
                                              index_col='time',
                                              parse_dates=True)
                    cls_shap_df = cls_shap_df.loc[t.test_interval.begin:t.
                                                  test_interval.end]

                    x_train = X_all.loc[cls_shap_df.index]
                    chunk_size = int(cls_shap_df.shape[0] / num_shap_plots)

                    fig = plt.figure(constrained_layout=True,
                                     figsize=(100, 50),
                                     dpi=300)  #
                    gs = GridSpec(3,
                                  num_shap_plots,
                                  figure=fig,
                                  wspace=1.5,
                                  hspace=0.3)
                    precision_ax = fig.add_subplot(gs[0, :])
                    shap_values_ax = fig.add_subplot(gs[1, :])
                    beeswarms_axs = [
                        fig.add_subplot(gs[2, i])
                        for i in range(num_shap_plots)
                    ]
                    #format_axes(fig)
                    shap_plot_labels = set()
                    first_shap_day = results.iloc[0]['time'].replace(
                        '+00:00',
                        '').replace('T', '').replace(':', '').replace('-', '')
                    middle_shap_day = results.iloc[int(
                        results.shape[0] / 2)]['time'].replace(
                            '+00:00',
                            '').replace('T', '').replace(':',
                                                         '').replace('-', '')
                    last_shap_day = results.iloc[-1]['time'].replace(
                        '+00:00',
                        '').replace('T', '').replace(':', '').replace('-', '')
                    for idx, dayname in enumerate(
                        [first_shap_day, middle_shap_day, last_shap_day]):
                        day_csv_name = f"data/shap_values/{dataset}/{target}/{pipeline}/daily/shap_training_window_{symbol}_{label}_Wdays{t.window['days']}_DAY{dayname}.csv"

                        # Plot each section's SHAP values
                        cdf_subset = pd.read_csv(day_csv_name,
                                                 index_col='time',
                                                 parse_dates=True)
                        train_subset = X_all.loc[cdf_subset.index]

                        # Get a rank of feature labels based on this section's shap values
                        abs_mean_shap = cdf_subset.abs().mean(axis='index')
                        abs_mean_rank = abs_mean_shap.sort_values(
                            ascending=False)[:shap_show_count]
                        for l in abs_mean_rank.index:
                            # Save labels for features in the top-N
                            shap_plot_labels.add(l)

                        # Plot this section's SHAP values
                        plt.sca(beeswarms_axs[idx])
                        shap.summary_plot(cdf_subset.values,
                                          train_subset,
                                          max_display=shap_show_count,
                                          show=False,
                                          color_bar=False,
                                          sort=True)
                        min_date = cdf_subset.index.min().to_pydatetime()
                        max_date = cdf_subset.index.max().to_pydatetime(
                        ) + timedelta(days=1)
                        min_date_f = min_date.strftime("%Y/%m/%d")
                        max_date_f = max_date.strftime("%Y/%m/%d")
                        beeswarms_axs[idx].set_xlabel(
                            f"SHAP values\nWindow: {min_date_f} - {max_date_f}",
                            fontsize=8)
                        beeswarms_axs[idx].tick_params(axis='y',
                                                       which='major',
                                                       labelsize=6)
                        beeswarms_axs[idx].tick_params(axis='x',
                                                       which='major',
                                                       labelsize=8)

                    # Plot shap values
                    day_csv_name = f"data/shap_values/{dataset}/{target}/{pipeline}/shap_training_window_{symbol}_{label}_Wdays{t.window['days']}_.csv"
                    plot_cls_shap_df = pd.read_csv(day_csv_name,
                                                   index_col='time',
                                                   parse_dates=True)

                    def get_spread(series):
                        return np.abs(series.max() - series.min())

                    plot_rank = plot_cls_shap_df[list(shap_plot_labels)].apply(
                        get_spread, axis='index').sort_values(
                            ascending=False)[:shap_show_count]
                    plot_cls_shap_df['xlabel'] = [
                        t.to_pydatetime().strftime("%Y/%m/%d")
                        for t in plot_cls_shap_df.index
                    ]
                    shap_ax = plot_cls_shap_df.plot(
                        x='xlabel',
                        y=[c for c in plot_rank.index],
                        kind='line',
                        ax=shap_values_ax,
                        legend=False,
                        xlabel='')
                    patches, labels = shap_ax.get_legend_handles_labels()
                    shap_ax.legend(patches,
                                   labels,
                                   loc='center left',
                                   bbox_to_anchor=(1, 0.5),
                                   prop={'size': 6})
                    shap_ax.tick_params(axis='x', which='major', labelsize=8)
                    shap_ax.set_ylabel('mean(|SHAP|)', fontsize=6)
                    #shap_ax.tick_params(labelbottom=False, labelleft=False)

                    # Get Metrics scores dataframe
                    cri_df = get_metrics_df(results).rolling(
                        7, min_periods=1).mean()
                    cri_df['xlabel'] = [
                        t.to_pydatetime().strftime("%Y/%m/%d")
                        for t in cri_df.index
                    ]
                    cri_ax = cri_df.plot(x='xlabel',
                                         y=f"pre_{cls}",
                                         kind='line',
                                         ax=precision_ax,
                                         legend=False,
                                         xlabel='')
                    patches, labels = cri_ax.get_legend_handles_labels()
                    cri_ax.legend(patches,
                                  labels,
                                  loc='center left',
                                  bbox_to_anchor=(1, 0.5),
                                  prop={'size': 6})
                    cri_ax.set_ylabel('mean(precision)', fontsize=6)
                    cri_ax.tick_params(labelbottom=False, labelleft=True)

                    min_date = cri_df.index.min().to_pydatetime().strftime(
                        "%Y/%m/%d")
                    max_date = cri_df.index.max().to_pydatetime().strftime(
                        "%Y/%m/%d")
                    window = t.window['days']
                    fig.suptitle(
                        f"{symbol}, {pipeline}, W={window}D, Class {label}, From {min_date} to {max_date}"
                    )

                    # fig.show()
                    os.makedirs(f"images/shap-test-final/", exist_ok=True)
                    plt.savefig(
                        f"images/shap-test-final/{pipeline}_W{window}D_{dataset}_{target}_{symbol}_{label}.png",
                        dpi='figure')
                    plt.close()
                    print(f"{label} OK")

            print(f"Exported symbol {symbol}.")
            # # Load day estimator
            # est = load_estimator()

        print(f"Plotted {symbol}")
示例#5
0
def main(dataset: str, target: str, pipeline: str):
    shapes = []
    ds_service = DatasetService()
    m_service = ModelService()
    for symbol in SYMBOLS:
        print(f"Exporting shap dataframes for symbol {symbol}")
        ds = ds_service.get_dataset(name=dataset, symbol=symbol)
        fs = DatasetService.get_feature_selection(ds=ds,
                                                  method='importances_shap',
                                                  target=target)
        X_all = ds_service.get_dataset_features(ds=ds, columns=fs.features)
        y_all = ds_service.get_dataset_target(ds=ds, name=target)
        model = m_service.get_model(pipeline=pipeline,
                                    dataset=dataset,
                                    target=target,
                                    symbol=symbol)
        for t in model.tests:
            os.makedirs(
                f"data/shap_values/{dataset}/{target}/{pipeline}/daily",
                exist_ok=True)
            placeholder = "{label}"
            csv_name = f"data/shap_values/{dataset}/{target}/{pipeline}/shap_training_window_{symbol}_{placeholder}_Wdays{t.window['days']}_.csv"
            day_csv_name = f"data/shap_values/{dataset}/{target}/{pipeline}/daily/shap_training_window_{symbol}_{placeholder}_Wdays{t.window['days']}_"
            print(f"Loading estimators for test {t.window}")
            estimators = ModelService.load_test_estimators(model=model, mt=t)
            results = ModelService.parse_test_results(test=t)
            shaps = [[], [], []]

            X_test = X_all.loc[t.test_interval.begin:t.test_interval.end]
            shap_expected = []
            print(f"Calculating shap values")
            shap_abs_mean = [pd.DataFrame(), pd.DataFrame(), pd.DataFrame()]
            for est in tqdm(estimators):
                est_class = y_all.loc[est.day]
                training_data = est.train_x.astype(np.float64).fillna(value=0)

                shap_v, shap_exp = get_shap_values(estimator=est.named_steps.c,
                                                   X=training_data,
                                                   X_train=training_data,
                                                   bytes=False)

                if isinstance(shap_exp, float):
                    shap_expected.append([est.day] + [0, 0, shap_exp])
                else:
                    shap_expected.append([est.day] + [v for v in shap_exp])
                for cls, label in enumerate(["SELL", "HOLD", "BUY"]):
                    df = pd.DataFrame(shap_v[cls],
                                      index=est.train_x.index,
                                      columns=est.train_x.columns)
                    # if not shaps[cls]: # If list is empty, append whole df
                    #     shaps[cls].append(df)
                    # else:
                    #     shaps[cls].append(df.iloc[-1:])  # otherwise only append new row (sliding window)
                    # Save shap values dataframe for each day
                    dayname = est.day.replace('+00:00',
                                              '').replace('T', '').replace(
                                                  ':', '').replace('-', '')
                    day_class_csv_name = day_csv_name.format(
                        label=label) + f"DAY{dayname}.csv"
                    df.to_csv(day_class_csv_name, index_label='time')

                    # Process data for next plot
                    df_abs_mean = df.abs().mean().to_dict()
                    df_abs_mean['time'] = est.day
                    shaps[cls].append(df_abs_mean)

                    # print(shap_abs_mean.head())

            # Merge shap values in an unique dataframe and save to csv for each class
            for cls, label in enumerate(["SELL", "HOLD", "BUY"]):
                class_csv_name = csv_name.format(label=label)
                print(
                    f"Exporting dataframe for class {label} -> {class_csv_name}"
                )
                # cdf = pd.concat(shaps[cls], axis='index')
                cdf = pd.DataFrame.from_records(shaps[cls])
                cdf.index = pd.to_datetime(cdf.time)
                cdf = cdf[cdf.columns.difference(['time'])]
                cdf.to_csv(class_csv_name, index_label='time')

            expected_csv_name = csv_name.format(label='SHAP_expected')
            print(
                f"Exporting expected values dataframe -> {expected_csv_name}")
            edf = pd.DataFrame(
                shap_expected,
                columns=[
                    "time", "shap_expected_sell", "shap_expected_hold",
                    "shap_expected_buy"
                ],
            )
            edf.to_csv(expected_csv_name, index_label='time')

            print(f"Exported symbol {symbol}.")
            # # Load day estimator
            # est = load_estimator()

        print(f"Plotted {symbol}")
示例#6
0
def main(pipeline: str, dataset: str, symbol: str, window: int):
    ds = DatasetService()
    ms = ModelService()
    ts = TradingService()
    ohlcv_ds = ds.get_dataset('ohlcv', symbol=symbol)
    asset = ts.get_asset(pipeline=pipeline,
                         dataset=dataset,
                         target='class',
                         symbol=symbol,
                         window=window,
                         create=False)
    if not asset:
        print(
            f"Asset {pipeline}.{dataset}.class for {symbol} on window {window} not found!"
        )
        return
    test = ms.get_test(pipeline=pipeline,
                       dataset=dataset,
                       target='class',
                       symbol=symbol,
                       window=window)
    if not test:
        print(
            f"Test {pipeline}.{dataset}.class for {symbol} on window {window} not found!"
        )
    # ohlcv = ohlcv.loc[test.test_interval.begin:test.test_interval.end]
    ohlcv = ds.get_dataset_features(ohlcv_ds,
                                    begin=test.test_interval.begin,
                                    end=test.test_interval.end)
    test_results = ModelService.parse_test_results(test).iloc[:-1]
    enc_label = onehot_target(test_results.label,
                              labels=["is_sell", "is_hold", "is_buy"],
                              fill=False)
    enc_pred = onehot_target(test_results.predicted,
                             labels=["is_sell", "is_hold", "is_buy"],
                             fill=False)

    # Mask predictions with low value minus a certain amount
    signals_level_diff = ohlcv.low * 10 / 100
    signals_level = ohlcv.low - signals_level_diff
    #signals_level = ohlcv.low
    enc_pred.is_sell.mask(enc_pred.is_sell > 0,
                          other=signals_level,
                          inplace=True)
    enc_pred.is_hold.mask(enc_pred.is_hold > 0,
                          other=signals_level,
                          inplace=True)
    enc_pred.is_buy.mask(enc_pred.is_buy > 0,
                         other=signals_level,
                         inplace=True)

    # Get unique years in index to split plots in smaller scale
    unique_years = ohlcv.index.year.unique()
    for year in unique_years:
        year_pred = enc_pred[enc_pred.index.year == year]
        year_ohlcv = ohlcv[ohlcv.index.year == year]

        # Set up xticks
        daysToIndex = {
            ts.to_pydatetime(): i
            for i, ts in enumerate(year_ohlcv.index)
        }
        days = [i for i in daysToIndex.values()]
        labels = [
            ts.to_pydatetime().strftime("%Y-%m-%d") for ts in year_ohlcv.index
        ]

        # Setup matplotfinance styles and figure
        s = mpf.make_mpf_style(
            base_mpf_style='binance')  # , rc={'font.size': 6}
        fig = mpf.figure(
            figsize=(16, 8),
            style=s)  # pass in the self defined style to the whole canvas
        fig.suptitle(f"{ohlcv_ds.symbol}, {year}, 1D")

        ax = fig.add_subplot(3, 1, (1, 2))  # main candle stick chart subplot
        av = fig.add_subplot(3, 1, 3, sharex=ax)  # volume candles subplot

        # Setup horizontal grids
        ax.grid(axis='x', color='0.5', linestyle='--')
        av.grid(axis='x', color='0.5', linestyle='--')

        # for a in [ax, av]:
        #     a.set_xticks(ticks=days)
        #     a.set_xticklabels(labels=labels)
        #     a.tick_params(axis='x', labelrotation=90)

        apds = [
            #     mpf.make_addplot(tcdf)
            # Predictions
            mpf.make_addplot(year_ohlcv.close,
                             ax=ax,
                             type='line',
                             color=(0.5, 0.5, 0.5, 0.05)),
            mpf.make_addplot(year_pred.is_sell,
                             ax=ax,
                             type='scatter',
                             marker='v',
                             color='red'),
            mpf.make_addplot(year_pred.is_hold,
                             ax=ax,
                             type='scatter',
                             marker='_',
                             color='silver'),
            mpf.make_addplot(year_pred.is_buy,
                             ax=ax,
                             type='scatter',
                             marker='^',
                             color='lime'),
        ]

        mpf.plot(
            year_ohlcv,
            type='candle',
            style=s,
            #ylabel='Price ($)',
            ax=ax,
            volume=av,
            #ylabel_lower='Volume',
            show_nontrading=True,
            addplot=apds,
            returnfig=True)
        fig.autofmt_xdate()
        fig.tight_layout()
        plt.show()
        print("Done")
示例#7
0
def main(pipeline: str, dataset: str, symbol: str, window: int):
    ds = DatasetService()
    ms = ModelService()
    ts = TradingService()
    ohlcv_ds = ds.get_dataset('ohlcv', symbol=symbol)
    ohlcv = ds.get_dataset_features(
        ohlcv_ds)  # [ohlcv_ds.valid_index_min:ohlcv_ds.valid_index_max]

    # boll = pd.Series(percent_b(ohlcv.close, 21), index=ohlcv.index)
    boll = pd.Series(to_discrete_double(percent_b(ohlcv.close, 21), 20, 80),
                     index=ohlcv.index).replace(to_replace=-1, value=np.nan)

    #model = ms.get_model(pipeline, dataset, 'class', symbol)
    _test = ms.get_test(pipeline, dataset, 'class', symbol, window)
    for test in [
            _test
    ]:  # I originally traded all the tests in the model. ToDo: Refactor this.
        # Re-convert classification results from test to a DataFrame
        ohlcv_results = ohlcv[test.test_interval.begin:test.test_interval.end]
        results = ModelService.parse_test_results(test)

        #results.index = ohlcv_results.index
        # Parse index so it's a DateTimeIndex, because Mongo stores it as a string
        # results.index = pd.to_datetime(results.index)

        asset = ts.get_asset(pipeline=pipeline,
                             dataset=dataset,
                             target='class',
                             symbol=symbol,
                             window=test.window['days'])
        # Now use classification results to trade!
        day_count = results.shape[0]
        cur_day = 0
        print(
            "%B_Precision = {}",
            precision_score(results.label,
                            boll.loc[results.index],
                            average='macro',
                            zero_division=0))
        # Amount to buy in coins for buy and hold: $10k divided by first price in test set
        bh_price = ohlcv.close.loc[test.test_interval.begin]
        bh_amount = 10000 / bh_price

        for index, pred in results.iterrows():
            cur_day += 1
            # Get simulation day by converting Pandas' Timestamp to our format
            simulation_day = to_timestamp(index.to_pydatetime())
            # Results dataframe interprets values as float, while they are actually int
            predicted, label = int(pred.predicted), int(pred.label)

            # Grab ohlcv values for current day
            try:
                values = ohlcv.loc[index]
            except KeyError:
                print(f"Day: {index} not in OHLCV index!")
                continue
            try:
                boll_sig = boll.loc[
                    index] if boll.loc[index] != np.nan else None
            except KeyError:
                boll_sig = None
                print(f"Day: {index} not in BOLL index!")
                pass
            _index = ohlcv.index.get_loc(index)
            change = TradingService.get_percent_change(values.close,
                                                       values.open)

            print(
                f"Day {cur_day}/{day_count} [{index}] "
                f"[O {values.open} H {values.high} L {values.low} C {values.close}] "
                f"PCT={change}% "
                f"LABEL={TARGETS[label]} BPRED={TARGETS[boll_sig]} PRED={TARGETS[predicted]}"
            )
            open_positions = ts.get_open_positions(asset=asset,
                                                   day=simulation_day)
            for p in open_positions:
                p_age = TradingService.get_position_age(position=p,
                                                        day=simulation_day)
                try:
                    if p.type == 'MARGIN_LONG':
                        if TradingService.check_stop_loss(p, values.low):
                            ts.close_long(asset=asset,
                                          day=simulation_day,
                                          close_price=p.stop_loss,
                                          position=p,
                                          detail='Stop Loss')
                        elif TradingService.check_take_profit(p, values.high):
                            ts.close_long(asset=asset,
                                          day=simulation_day,
                                          close_price=p.take_profit,
                                          position=p,
                                          detail='Take Profit')
                        elif predicted == SELL:
                            ts.close_long(asset=asset,
                                          day=simulation_day,
                                          close_price=values.close,
                                          position=p,
                                          detail='Sell Signal')
                        elif predicted == HOLD and p_age > 86400 * 3:
                            ts.close_long(asset=asset,
                                          day=simulation_day,
                                          close_price=values.close,
                                          position=p,
                                          detail='Age')
                        elif predicted == BUY:
                            if change > 0:
                                ts.update_stop_loss(asset=asset,
                                                    position=p,
                                                    close_price=values.close,
                                                    pct=-0.05)
                    elif p.type == 'MARGIN_SHORT':
                        if TradingService.check_stop_loss(p, values.high):
                            ts.close_short(asset=asset,
                                           day=simulation_day,
                                           close_price=p.stop_loss,
                                           position=p,
                                           detail='Stop Loss')
                        elif TradingService.check_take_profit(p, values.low):
                            ts.close_short(asset=asset,
                                           day=simulation_day,
                                           close_price=p.take_profit,
                                           position=p,
                                           detail='Take Profit')
                        elif predicted == SELL:
                            # If we had some profit and signal is still SELL, book those by lowering stop loss
                            if change < 0:
                                ts.update_stop_loss(asset=asset,
                                                    position=p,
                                                    close_price=values.close,
                                                    pct=0.05)
                        elif predicted == HOLD and p_age > 86400 * 3:
                            ts.close_short(asset=asset,
                                           day=simulation_day,
                                           close_price=values.close,
                                           position=p,
                                           detail='Age')
                        elif predicted == BUY:
                            ts.close_short(asset=asset,
                                           day=simulation_day,
                                           close_price=values.close,
                                           position=p,
                                           detail='Buy Signal')
                except MessageException as e:
                    print(f"Order handling exception: {e.message}")

            try:
                # If prediction is BUY (price will rise) then open a MARGIN LONG position
                if predicted == BUY:
                    ts.open_long(asset=asset,
                                 day=simulation_day,
                                 close_price=values.close,
                                 size=0.1,
                                 stop_loss=-0.1,
                                 take_profit=0.05)
                # If prediction is SELL (price will drop) open a MARGIN SHORT position
                elif predicted == SELL:
                    ts.open_short(asset=asset,
                                  day=simulation_day,
                                  close_price=values.close,
                                  size=0.1,
                                  stop_loss=0.1,
                                  take_profit=-0.05)
            except MessageException as e:
                print(f"Order placement exception: {e.message}")

            # If this is the last trading day of the period, close all open positions
            if index.timestamp() == results.index[-1].timestamp():
                print("Last trading day reached, liquidating all positions..")
                open_positions = ts.get_open_positions(asset=asset,
                                                       day=simulation_day)
                for p in open_positions:
                    try:
                        if p.type == 'MARGIN_LONG':
                            ts.close_long(asset=asset,
                                          day=simulation_day,
                                          close_price=values.close,
                                          position=p,
                                          detail='Liquidation')
                        elif p.type == 'MARGIN_SHORT':
                            ts.close_short(asset=asset,
                                           day=simulation_day,
                                           close_price=values.close,
                                           position=p,
                                           detail='Liquidation')
                    except MessageException as e:
                        print(f"Order liquidation exception: {e.message}")

            # Update equity value for the asset
            ts.update_equity(asset=asset,
                             day=simulation_day,
                             price=values.close)
            # Update baseline values for the asset
            ts.update_baseline(asset=asset,
                               day=simulation_day,
                               name='buy_and_hold',
                               value=values.close * bh_amount)

        print("Timeframe done.")
示例#8
0
def main(dataset: str, target: str):
    # hierarchy = load_hierarchy(f"{dataset}_{target}_feature_hierarchy.yml")
    # hdf = pd.DataFrame(hierarchy)

    shapes = []
    for symbol in SYMBOLS:
        ds_service = DatasetService()
        ds = ds_service.get_dataset(name=dataset, symbol=symbol)
        fs = DatasetService.get_feature_selection(ds=ds,
                                                  method='importances_shap',
                                                  target=target)
        shap_v, shap_exp = parse_shap_values(fs.shap_values)

        X_train = ds_service.get_dataset_features(
            ds=ds,
            begin=fs.search_interval.begin,
            end=fs.search_interval.end  #,
            #columns=fs.features
        )
        shapes.append(X_train.shape[0])

        shap_0 = pd.DataFrame(shap_v[0],
                              index=X_train.index,
                              columns=X_train.columns)
        shap_1 = pd.DataFrame(shap_v[1],
                              index=X_train.index,
                              columns=X_train.columns)
        shap_2 = pd.DataFrame(shap_v[2],
                              index=X_train.index,
                              columns=X_train.columns)

        sel_train = X_train[fs.features]
        sel_shap_0 = shap_0[fs.features]
        sel_shap_1 = shap_1[fs.features]
        sel_shap_2 = shap_2[fs.features]

        show_count = 50  #len(fs.features)
        shap.summary_plot(sel_shap_0.values,
                          sel_train,
                          max_display=show_count,
                          show=False)
        plt.tight_layout()
        plt.title(
            f"SHAP Summary plot for {symbol}, top {show_count} features for class SELL"
        )
        plt.savefig(
            f"images/shap-global/{dataset}_{target}__shap__summary_plot_{symbol}_SELL_top{show_count}.png"
        )
        plt.close()

        shap.summary_plot(sel_shap_1.values,
                          sel_train,
                          max_display=show_count,
                          show=False)
        plt.tight_layout()
        plt.title(
            f"SHAP Summary plot for {symbol}, top {show_count} features for class HOLD"
        )
        plt.savefig(
            f"images/shap-global/{dataset}_{target}__shap__summary_plot_{symbol}_HOLD_top{show_count}.png"
        )
        plt.close()

        shap.summary_plot(sel_shap_2.values,
                          sel_train,
                          max_display=show_count,
                          show=False)
        plt.tight_layout()
        plt.title(
            f"SHAP Summary plot for {symbol}, top {show_count} features for class BUY"
        )
        plt.savefig(
            f"images/shap-global/{dataset}_{target}__shap__summary_plot_{symbol}_BUY_top{show_count}.png"
        )
        plt.close()

        shap.summary_plot(np.abs(sel_shap_0.values),
                          sel_train,
                          max_display=show_count,
                          show=False)
        plt.tight_layout()
        plt.title(
            f"Absolute SHAP Summary plot for {symbol}, top {show_count} features for class SELL"
        )
        plt.savefig(
            f"images/shap-global/{dataset}_{target}__shap__summary_plot_{symbol}_SELL_abs_top{show_count}.png"
        )
        plt.close()

        shap.summary_plot(np.abs(sel_shap_1.values),
                          sel_train,
                          max_display=show_count,
                          show=False)
        plt.tight_layout()
        plt.title(
            f"Absolute SHAP Summary plot for {symbol}, top {show_count} features for class HOLD"
        )
        plt.savefig(
            f"images/shap-global/{dataset}_{target}__shap__summary_plot_{symbol}_HOLD_abs_top{show_count}.png"
        )
        plt.close()

        shap.summary_plot(np.abs(sel_shap_2.values),
                          sel_train,
                          max_display=show_count,
                          show=False)
        plt.tight_layout()
        plt.title(
            f"Absolute SHAP Summary plot for {symbol}, top {show_count} features for class BUY"
        )
        plt.savefig(
            f"images/shap-global/{dataset}_{target}__shap__summary_plot_{symbol}_BUY_abs_top{show_count}.png"
        )
        plt.close()

        show_count = 25
        shap.summary_plot(sel_shap_0.values,
                          sel_train,
                          max_display=show_count,
                          show=False)
        plt.tight_layout()
        plt.title(
            f"SHAP Summary plot for {symbol}, top {show_count} features for class SELL"
        )
        plt.savefig(
            f"images/shap-global/{dataset}_{target}__shap__summary_plot_{symbol}_SELL_top{show_count}.png"
        )
        plt.close()

        shap.summary_plot(sel_shap_1.values,
                          sel_train,
                          max_display=show_count,
                          show=False)
        plt.tight_layout()
        plt.title(
            f"SHAP Summary plot for {symbol}, top {show_count} features for class HOLD"
        )
        plt.savefig(
            f"images/shap-global/{dataset}_{target}__shap__summary_plot_{symbol}_HOLD_top{show_count}.png"
        )
        plt.close()

        shap.summary_plot(sel_shap_2.values,
                          sel_train,
                          max_display=show_count,
                          show=False)
        plt.tight_layout()
        plt.title(
            f"SHAP Summary plot for {symbol}, top {show_count} features for class BUY"
        )
        plt.savefig(
            f"images/shap-global/{dataset}_{target}__shap__summary_plot_{symbol}_BUY_top{show_count}.png"
        )
        plt.close()

        shap.summary_plot(np.abs(sel_shap_0.values),
                          sel_train,
                          max_display=show_count,
                          show=False)
        plt.tight_layout()
        plt.title(
            f"Absolute SHAP Summary plot for {symbol}, top {show_count} features for class SELL"
        )
        plt.savefig(
            f"images/shap-global/{dataset}_{target}__shap__summary_plot_{symbol}_SELL_abs_top{show_count}.png"
        )
        plt.close()

        shap.summary_plot(np.abs(sel_shap_1.values),
                          sel_train,
                          max_display=show_count,
                          show=False)
        plt.tight_layout()
        plt.title(
            f"Absolute SHAP Summary plot for {symbol}, top {show_count} features for class HOLD"
        )
        plt.savefig(
            f"images/shap-global/{dataset}_{target}__shap__summary_plot_{symbol}_HOLD_abs_top{show_count}.png"
        )
        plt.close()

        shap.summary_plot(np.abs(sel_shap_2.values),
                          sel_train,
                          max_display=show_count,
                          show=False)
        plt.tight_layout()
        plt.title(
            f"Absolute SHAP Summary plot for {symbol}, top {show_count} features for class BUY"
        )
        plt.savefig(
            f"images/shap-global/{dataset}_{target}__shap__summary_plot_{symbol}_BUY_abs_top{show_count}.png"
        )
        plt.close()

        print(f"Plotted {symbol}")
def main(dataset: str, target: str, pipeline: str):
    hierarchy = load_hierarchy(f"{dataset}_{target}_feature_hierarchy.yml")
    hdf = pd.DataFrame(hierarchy)

    num_shap_plots = 3
    shap_show_count = 10

    ds_service = DatasetService()
    m_service = ModelService()
    for symbol in SYMBOLS:
        print(f"Plotting shap dataframes for symbol {symbol}")
        ds = ds_service.get_dataset(name=dataset, symbol=symbol)
        fs = DatasetService.get_feature_selection(ds=ds,
                                                  method='importances_shap',
                                                  target=target)
        X_all = ds_service.get_dataset_features(ds=ds, columns=fs.features)
        y_all = ds_service.get_dataset_target(ds=ds, name=target)
        model = m_service.get_model(pipeline=pipeline,
                                    dataset=dataset,
                                    target=target,
                                    symbol=symbol)
        for t in model.tests:
            os.makedirs(
                f"images/shap-test-hierarchy/{dataset}/{target}/{pipeline}/",
                exist_ok=True)
            placeholder = "{label}"
            csv_name = f"data/shap_values/{dataset}/{target}/{pipeline}/shap_training_window_{symbol}_{placeholder}_Wdays{t.window['days']}_.csv"
            expected_csv_name = csv_name.format(label='SHAP_expected')
            print(f"Loading results for test {t.window}")
            results = ModelService.parse_test_results(test=t)
            exp_shap_df = pd.read_csv(expected_csv_name,
                                      index_col='time',
                                      parse_dates=True)
            for cls, label in enumerate(["SELL", "HOLD", "BUY"]):
                class_csv_name = csv_name.format(label=label)
                cls_shap_df = pd.read_csv(class_csv_name,
                                          index_col='time',
                                          parse_dates=True)
                cls_shap_df = cls_shap_df.loc[t.test_interval.begin:t.
                                              test_interval.end]

                x_train = X_all.loc[cls_shap_df.index]
                chunk_size = int(cls_shap_df.shape[0] / num_shap_plots)

                # fig = plt.figure(constrained_layout=True, figsize=(100, 50), dpi=300) #
                # gs = GridSpec(3, num_shap_plots, figure=fig, wspace=1.5, hspace=0.3)
                # precision_ax = fig.add_subplot(gs[0, :])
                # shap_values_ax = fig.add_subplot(gs[1, :])
                # beeswarms_axs = [fig.add_subplot(gs[2, i]) for i in range(num_shap_plots)]
                # #format_axes(fig)
                # shap_plot_labels = set()
                # for idx, start in enumerate(range(0, cls_shap_df.shape[0], chunk_size)):
                #     end = start + chunk_size
                #     left = cls_shap_df.shape[0] - end
                #     if left > 0 and left < chunk_size:
                #         end += left
                #     elif left < 0:
                #         break
                #     # Plot each section's SHAP values
                #     cdf_subset = cls_shap_df.iloc[start:end]
                #     train_subset = x_train.iloc[start:end]
                #
                #     # Get a rank of feature labels based on this section's shap values
                #     abs_mean_shap = cdf_subset.abs().mean(axis='index')
                #     abs_mean_rank = abs_mean_shap.sort_values(ascending=False)[:shap_show_count]
                #     for l in abs_mean_rank.index:
                #         # Save labels for features in the top-N
                #         shap_plot_labels.add(l)
                #
                #     # Plot this section's SHAP values
                #     plt.sca(beeswarms_axs[idx])
                #     shap.summary_plot(
                #         cdf_subset.values,
                #         train_subset,
                #         max_display=shap_show_count,
                #         show=False,
                #         color_bar=False,
                #         sort=True
                #     )
                #     min_date = cdf_subset.index.min().to_pydatetime().strftime("%Y/%m/%d")
                #     max_date = cdf_subset.index.max().to_pydatetime().strftime("%Y/%m/%d")
                #     beeswarms_axs[idx].set_xlabel(f"SHAP values\n{min_date} - {max_date}", fontsize=8)
                #     beeswarms_axs[idx].tick_params(axis='y', which='major', labelsize=6)
                #     beeswarms_axs[idx].tick_params(axis='x', which='major', labelsize=8)

                # # Plot shap values
                # plot_cls_shap_df = cls_shap_df.abs().rolling(7, min_periods=1).mean()
                # def get_spread(series):
                #     return np.abs(series.max() - series.min())
                # plot_rank = plot_cls_shap_df[list(shap_plot_labels)].apply(get_spread, axis='index').sort_values(ascending=False)[:shap_show_count]
                # plot_cls_shap_df['xlabel'] = [t.to_pydatetime().strftime("%Y/%m/%d") for t in plot_cls_shap_df.index]
                # shap_ax = plot_cls_shap_df.plot(
                #     x='xlabel',
                #     y=[c for c in plot_rank.index],
                #     kind='line',
                #     ax=shap_values_ax,
                #     legend=False,
                #     xlabel=''
                # )
                # patches, labels = shap_ax.get_legend_handles_labels()
                # shap_ax.legend(
                #     patches, labels,
                #     loc='center left', bbox_to_anchor=(1, 0.5), prop={'size': 6}
                # )
                # shap_ax.tick_params(axis='x', which='major', labelsize=8)
                # shap_ax.set_ylabel('mean(|SHAP|)', fontsize=6)
                # #shap_ax.tick_params(labelbottom=False, labelleft=False)
                #
                # # Get Metrics scores dataframe
                # cri_df = get_metrics_df(results).rolling(7, min_periods=1).mean()
                # cri_df['xlabel'] = [t.to_pydatetime().strftime("%Y/%m/%d") for t in cri_df.index]
                # cri_ax = cri_df.plot(
                #     x='xlabel',
                #     y=f"pre_{cls}",
                #     kind='line',
                #     ax=precision_ax,
                #     legend=False,
                #     xlabel=''
                # )
                # patches, labels = cri_ax.get_legend_handles_labels()
                # cri_ax.legend(
                #     patches, labels,
                #     loc='center left', bbox_to_anchor=(1, 0.5), prop={'size': 6}
                # )
                # cri_ax.set_ylabel('mean(precision)', fontsize=6)
                # cri_ax.tick_params(labelbottom=False, labelleft=True)
                #
                # min_date = cri_df.index.min().to_pydatetime().strftime("%Y/%m/%d")
                # max_date = cri_df.index.max().to_pydatetime().strftime("%Y/%m/%d")
                # fig.suptitle(f"{pipeline}, {symbol}, class {label} tests from {min_date} to {max_date}")
                #
                # # fig.show()
                # plt.savefig(
                #     f"images/shap-test/{pipeline}_{dataset}_{target}_{symbol}_{label}.png",
                #     dpi='figure'
                # )
                # plt.close()
                print(f"{label} OK")

            print(f"Exported symbol {symbol}.")
            # # Load day estimator
            # est = load_estimator()

        print(f"Plotted {symbol}")
class FeatureSelectionService:
    def __init__(self):
        self.model_repo = ModelRepository()
        self.dataset_service = DatasetService()

    def create_features_search(self,
                               *,
                               symbol: str,
                               dataset: str,
                               target: str,
                               split: float,
                               method: str,
                               task_key: str = None) -> ModelFeatures:
        ds = self.dataset_service.get_dataset(dataset, symbol)
        splits = DatasetService.get_train_test_split_indices(ds, split)
        result = ModelFeatures(dataset=dataset,
                               target=target,
                               symbol=symbol,
                               search_interval=splits['train'],
                               feature_selection_method=method,
                               task_key=task_key or str(uuid4()))
        return result

    def feature_selection(self, mf: ModelFeatures, **kwargs) -> ModelFeatures:

        # Load dataset
        X = self.dataset_service.get_features(mf.dataset,
                                              mf.symbol,
                                              mf.search_interval.begin,
                                              mf.search_interval.end,
                                              columns=mf.features)
        y = self.dataset_service.get_target(mf.target, mf.symbol,
                                            mf.search_interval.begin,
                                            mf.search_interval.end)

        unique, counts = np.unique(y, return_counts=True)
        if len(unique) < 2:
            logging.error(
                "[{}-{}-{}]Training data contains less than 2 classes: {}".
                format(mf.symbol, mf.dataset, mf.target, unique))
            raise MessageException(
                "Training data contains less than 2 classes: {}".format(
                    unique))

        # Perform search
        mf.start_at = get_timestamp()  # Log starting timestamp
        if not mf.feature_selection_method or mf.feature_selection_method == 'importances':
            selector = select_from_model(X, y)
            mf.feature_importances = label_feature_importances(
                selector.estimator_, X.columns)
        elif mf.feature_selection_method == 'importances_cv':
            selector = select_from_model_cv(X, y)
            mf.feature_importances = label_feature_importances(
                selector.estimator_.best_estimator_, X.columns)
        elif mf.feature_selection_method == 'fscore':
            selector = select_percentile(X, y, percentile=10)
        elif mf.feature_selection_method == 'relieff':
            selector = select_relieff(X, y, percentile=10)
        elif mf.feature_selection_method == 'multisurf':
            selector = select_multisurf(X, y, percentile=10)
        else:
            raise NotFoundException(
                "Cannot find feature selection method by {}".format(
                    mf.feature_selection_method))
        mf.end_at = get_timestamp()  # Log ending timestamp

        # Update search request with results
        mf.features = label_support(selector.get_support(), X.columns)

        # Update model with the new results
        if kwargs.get('save', True):
            self.model_repo.append_features_query(
                {
                    "dataset": mf.dataset,
                    "symbol": mf.symbol,
                    "target": mf.target
                }, mf)
        return mf

    def get_available_symbols(self, dataset: str):
        return self.dataset_service.get_dataset_symbols(name=dataset)

    def feature_selection_new(self, *, symbol: str, dataset: str, target: str,
                              split: float, method: str,
                              **kwargs) -> ModelFeatures:
        ds = self.dataset_service.get_dataset(dataset, symbol)
        fs_exists = DatasetService.has_feature_selection(ds=ds,
                                                         method=method,
                                                         target=target)
        if fs_exists:
            if kwargs.get('replace'):
                self.dataset_service.remove_feature_selection(ds=ds,
                                                              method=method,
                                                              target=target)
            else:
                if kwargs.get('save'):
                    raise MessageException(
                        f"Feature selection with method '{method}' alrady performed for '{dataset}.{symbol}' and target '{target}'"
                    )

        splits = DatasetService.get_train_test_split_indices(ds, split)
        fs = FeatureSelection(target=target,
                              method=method,
                              search_interval=splits['train'],
                              task_key=kwargs.get('task_key', str(uuid4())))

        # Load dataset
        X = self.dataset_service.get_dataset_features(
            ds=ds, begin=fs.search_interval.begin, end=fs.search_interval.end)
        y = self.dataset_service.get_dataset_target(
            name=fs.target,
            ds=ds,
            begin=fs.search_interval.begin,
            end=fs.search_interval.end)

        unique, counts = np.unique(y, return_counts=True)
        if len(unique) < 2:
            logging.error(
                "[{}-{}-{}]Training data contains less than 2 classes: {}".
                format(symbol, dataset, target, unique))
            raise MessageException(
                "Training data contains less than 2 classes: {}".format(
                    unique))

        # Perform search
        fs.start_at = get_timestamp()  # Log starting timestamp
        if not fs.method or 'importances' in fs.method:
            if '_cv' in fs.method:
                selector = select_from_model_cv(X, y)
            else:
                selector = select_from_model(X, y)
            fs.feature_importances = label_feature_importances(
                selector.estimator_, X.columns)
            if '_shap' in fs.method:
                fs.shap_values = get_shap_values(
                    model=selector.estimator_.named_steps.c, X=X, X_train=X)
                shap_values = parse_shap_values(fs.shap_values)
        elif fs.method == 'fscore':
            selector = select_percentile(X, y, percentile=10)
        elif fs.method == 'relieff':
            selector = select_relieff(X, y, percentile=10)
        elif fs.method == 'multisurf':
            selector = select_multisurf(X, y, percentile=10)
        else:
            raise NotFoundException(
                "Cannot find feature selection method by {}".format(fs.method))
        fs.end_at = get_timestamp()  # Log ending timestamp

        # Update search request with results
        fs.features = label_support(selector.get_support(), X.columns)

        if not kwargs.get('save'):
            return fs
        return self.dataset_service.append_feature_selection(ds, fs)
示例#11
0
def main(dataset: str):
    ds = DatasetService()
    ms = ModelService()
    ts = TradingService()
    logs = []
    for pipeline in PIPELINES:
        for symbol in SYMBOLS:
            for window in WINDOWS:
                print(
                    f"PIPELINE: {pipeline} SYMBOL: {symbol} WINDOW: {window}")
                ohlcv_ds = ds.get_dataset('ohlcv', symbol=symbol)
                test = ms.get_test(pipeline=pipeline,
                                   dataset=dataset,
                                   target='class',
                                   symbol=symbol,
                                   window=window)
                if not test:
                    print(
                        f"Test {pipeline}.{dataset}.class for {symbol} on window {window} not found!"
                    )
                    logs.append(
                        f"MISSING_TEST {pipeline} {dataset} {symbol} class {window} --features importances_shap --parameters gridsearch\n"
                    )
                    continue
                asset = ts.get_asset(pipeline=pipeline,
                                     dataset=dataset,
                                     target='class',
                                     symbol=symbol,
                                     window=window,
                                     create=False)
                if not asset:
                    print(
                        f"Asset {pipeline}.{dataset}.class for {symbol} on window {window} not found!"
                    )
                    logs.append(
                        f"MISSING_ASSET {pipeline} {dataset} {symbol} {window}\n"
                    )
                    continue

                equity = TradingService.parse_equity_df(asset=asset)
                buy_and_hold = TradingService.parse_baseline_df(
                    asset=asset, name='buy_and_hold')
                orders = TradingService.parse_orders_df(asset=asset)

                # Map order position_id to numbers so we don't get a mess in the graph
                position_uids = set(orders.position_id.values)
                for i, uid in enumerate(position_uids):
                    orders.position_id.replace(to_replace=uid,
                                               value=i,
                                               inplace=True)

                ohlcv = ds.get_dataset_features(ohlcv_ds,
                                                begin=test.test_interval.begin,
                                                end=test.test_interval.end)
                test_results = ModelService.parse_test_results(test).iloc[:-1]
                # Mask predictions with low value minus a certain amount
                signals_level_diff = ohlcv.low * 10 / 100
                signals_level = ohlcv.low - signals_level_diff
                enc_pred = onehot_target(
                    test_results.predicted,
                    labels=["is_sell", "is_hold", "is_buy"],
                    fill=False)
                #  In case of classifier bias (due to input bias) some classes are ignored.
                # In such cases, enc_pred won't contain the ignored classes.
                # Add them back by nan-filling (never selected)
                if hasattr(enc_pred, 'is_sell'):
                    use_idx = enc_pred.is_sell > 0
                    enc_pred.is_sell.mask(
                        use_idx,
                        other=signals_level.loc[enc_pred.index],
                        inplace=True)
                else:
                    enc_pred['is_sell'] = pd.Series(np.nan,
                                                    index=enc_pred.index)
                if hasattr(enc_pred, 'is_hold'):
                    enc_pred.is_hold.mask(
                        enc_pred.is_hold > 0,
                        other=signals_level.loc[enc_pred.index],
                        inplace=True)
                else:
                    enc_pred['is_hold'] = pd.Series(np.nan,
                                                    index=enc_pred.index)
                if hasattr(enc_pred, 'is_buy'):
                    enc_pred.is_buy.mask(
                        enc_pred.is_buy > 0,
                        other=signals_level.loc[enc_pred.index],
                        inplace=True)
                else:
                    enc_pred['is_buy'] = pd.Series(np.nan,
                                                   index=enc_pred.index)

                # Get unique years in index to split plots in smaller scale
                unique_years = ohlcv.index.year.unique()
                for year in unique_years:
                    year_ohlcv = ohlcv[ohlcv.index.year == year]
                    year_pred = enc_pred[enc_pred.index.year == year]
                    year_equity = equity[equity.index.year == year]
                    year_buy_and_hodl = buy_and_hold[buy_and_hold.index.year ==
                                                     year]
                    year_orders = orders[orders.index.year == year]

                    unique_quarters = year_ohlcv.index.quarter.unique()
                    for quarter in unique_quarters:
                        q_ohlcv = year_ohlcv[year_ohlcv.index.quarter ==
                                             quarter]
                        q_pred = year_pred[year_pred.index.quarter == quarter]
                        q_equity = year_equity[year_equity.index.quarter ==
                                               quarter]
                        q_orders = year_orders[year_orders.index.quarter ==
                                               quarter]
                        q_buy_and_hodl = year_buy_and_hodl[
                            year_buy_and_hodl.index.quarter == quarter]
                        #f"{ohlcv_ds.symbol}, {year} - Q{quarter}, 1D", 'Trades', 'Equity'
                        img_path = f"images/backtests-final/{pipeline}-{dataset}-class-W{window}/{symbol}/"
                        img_name = f"trades-{year}-Q{quarter}.png"
                        if os.path.exists(f"{img_path}/{img_name}"):
                            print(f"[SKIP] File exists {img_path}/{img_name}")
                            continue
                        make_plot(
                            ohlcv=q_ohlcv,
                            orders=q_orders,
                            equity=q_equity,
                            baselines=[('Buy and Hold', q_buy_and_hodl)],
                            pred=q_pred,
                            signals_title=
                            f"{ohlcv_ds.symbol}, {pipeline}, W={window}D, {year} - Q{quarter}, 1D",
                            img_path=img_path,
                            img_name=img_name,
                            bollinger=True)
                        print(
                            f"{year}-Q{quarter} saved to {img_path}{img_name}")
    with open(f"trading_plotly.{dataset}.log", "w") as f:
        f.writelines(logs)
    print("Logs saved")