def _build(self):
        '''Create populations.'''
        def pos(idx):
            assert idx == 0, 'This population has only one node.'
            return (0.5, 0.5)
            # Source node is located at (0.5, 0.5) because csa.random2d() can
            # only scatter nodes on the unit square.

        self._g1 = pos
        self._g2 = csa.random2d(self._N)
        self._d = csa.euclidMetric2d(self._g1, self._g2)
    def _connect(self):
        '''Connect populations.'''

        g1 = self._geometryFunction(self._ls)
        g2 = self._geometryFunction(self._lt)
        d = csa.euclidMetric2d(g1, g2)
        sigma = self._params['sigma']
        cutoff = self._max_dist
        cs = csa.cset(
            csa.cross([0], xrange(self._N - 1)) *
            (csa.random * (csa.gaussian(sigma, cutoff) * d)), 1.0, 1.0)
        nest.CGConnect(
            nest.GetLeaves(self._ls)[0],
            nest.GetLeaves(self._lt)[0], cs, {
                'weight': 0,
                'delay': 1
            })
示例#3
0
def csa_topology_example():

    # layers have 20x20 neurons and extent 1 x 1
    pop1 = topo.CreateLayer({'elements': 'iaf_neuron',
                             'rows': 20, 'columns': 20})
    pop2 = topo.CreateLayer({'elements': 'iaf_neuron',
                             'rows': 20, 'columns': 20})

    # create CSA-style geometry functions and metric
    g1 = geometryFunction(pop1)
    g2 = geometryFunction(pop2)
    d = csa.euclidMetric2d(g1, g2)

    # Gaussian connectivity profile, sigma = 0.2, cutoff at 0.5
    cs = csa.cset(csa.random * (csa.gaussian(0.2, 0.5) * d), 10000.0, 1.0)

    # create connections
    nest.CGConnect(pop1, pop2, cs, {"weight": 0, "delay": 1})

    # show targets of center neuron
    topo.PlotTargets(topo.FindCenterElement(pop1), pop2)
示例#4
0
    'rows': 20,
    'columns': 20
})
pop2 = topo.CreateLayer({
    'elements': 'iaf_psc_alpha',
    'rows': 20,
    'columns': 20
})
"""
For each layer, we create a CSA-style geometry function and a CSA
metric based on them.
"""

g1 = geometryFunction(pop1)
g2 = geometryFunction(pop2)
d = csa.euclidMetric2d(g1, g2)
"""
The connection set ``cs`` describes a Gaussian connectivity profile
with sigma = 0.2 and cutoff at 0.5, and two values (10000.0 and 1.0)
used as weight and delay, respectively.
"""

cs = csa.cset(csa.random * (csa.gaussian(0.2, 0.5) * d), 10000.0, 1.0)
"""
We can now connect the populations using the `CGConnect` function.
It takes the IDs of pre- and postsynaptic neurons (``pop1`` and
``pop2``), the connection set (``cs``) and a dictionary that maps
the parameters weight and delay to positions in the value set
associated with the connection set.
"""
示例#5
0
def do_run(plot):

    p.setup(timestep=1.0)

    cell_params_lif = {
        'cm': 0.25,
        'i_offset': 0.0,
        'tau_m': 20.0,
        'tau_refrac': 2.0,
        'tau_syn_E': 5.0,
        'tau_syn_I': 5.0,
        'v_reset': -70.0,
        'v_rest': -65.0,
        'v_thresh': -40.0
    }

    n = 13  # 10  # 5
    p.set_number_of_neurons_per_core(p.IF_curr_exp, n)
    weight_to_spike = 2.0
    delay = 5
    runtime = 200

    # Network
    grid = csa.grid2d(n, xScale=1.0 * n, yScale=1.0 * n)

    # SpikeInjector
    injectionConnection = [(0, 0)]
    spikeArray = {'spike_times': [[0]]}
    inj_pop = p.Population(1,
                           p.SpikeSourceArray(**spikeArray),
                           label='inputSpikes_1')

    # grid population
    grid_pop = p.Population(n * n,
                            p.IF_curr_exp(**cell_params_lif),
                            label='grid_pop')

    p.Projection(inj_pop, grid_pop, p.FromListConnector(injectionConnection),
                 p.StaticSynapse(weight=weight_to_spike, delay=delay))

    # Connectors
    exc_connector_set = csa.disc(2.5) * csa.euclidMetric2d(grid)
    exc_connector = p.CSAConnector(exc_connector_set)

    inh_connector_set = csa.disc(1.5) * csa.euclidMetric2d(grid)
    inh_connector = p.CSAConnector(inh_connector_set)

    # Wire grid
    p.Projection(grid_pop, grid_pop, exc_connector,
                 p.StaticSynapse(weight=2.0, delay=10))
    p.Projection(grid_pop, grid_pop, inh_connector,
                 p.StaticSynapse(weight=0.5, delay=15))

    grid_pop.record(['v', 'spikes'])

    p.run(runtime)

    v = grid_pop.spinnaker_get_data('v')
    spikes = grid_pop.spinnaker_get_data('spikes')

    if plot:
        # original grid
        csa.gplot2d(grid, n * n)

        # excitatory connector
        exc_connector.show_connection_set()
        csa.gplotsel2d(grid,
                       exc_connector_set,
                       range(n * n),
                       range(n * n),
                       N0=n * n)

        # inhibitory connector
        inh_connector.show_connection_set()
        csa.gplotsel2d(grid,
                       inh_connector_set,
                       range(n * n),
                       range(n * n),
                       N0=n * n)

        # Now plot spikes and v
        pylab.figure()
        pylab.plot([i[1] for i in spikes], [i[0] for i in spikes], "r.")
        pylab.xlabel('Time/ms')
        pylab.ylabel('spikes')
        pylab.title('spikes')

        pylab.show()

        pylab.figure()
        ticks = len(v) // (n * n)
        for pos in range(0, n * n):
            v_for_neuron = v[pos * ticks:(pos + 1) * ticks]
            pylab.plot([i[2] for i in v_for_neuron])
        pylab.xlabel('Time/ms')
        pylab.ylabel('V')
        pylab.title('membrane voltages per neuron')

        pylab.show()

    p.end()

    return v, spikes
We create two layers that have 20x20 neurons of type `iaf_psc_alpha`.
"""

pop1 = topo.CreateLayer({'elements': 'iaf_psc_alpha',
                         'rows': 20, 'columns': 20})
pop2 = topo.CreateLayer({'elements': 'iaf_psc_alpha',
                         'rows': 20, 'columns': 20})

"""
For each layer, we create a CSA-style geometry function and a CSA
metric based on them.
"""

g1 = geometryFunction(pop1)
g2 = geometryFunction(pop2)
d = csa.euclidMetric2d(g1, g2)

"""
The connection set ``cs`` describes a Gaussian connectivity profile
with sigma = 0.2 and cutoff at 0.5, and two values (10000.0 and 1.0)
used as weight and delay, respectively.
"""

cs = csa.cset(csa.random * (csa.gaussian(0.2, 0.5) * d), 10000.0, 1.0)

"""
We can now connect the populations using the `CGConnect` function.
It takes the IDs of pre- and postsynaptic neurons (``pop1`` and
``pop2``), the connection set (``cs``) and a dictionary that maps
the parameters weight and delay to positions in the value set
associated with the connection set.
示例#7
0
node = setup(timestep=0.025, min_delay=1.0, max_delay=1.0, debug=True, quit_on_end=False)
print "Process with rank %d running on %s" % (node, socket.gethostname())


rng = NumpyRNG(seed=seed, parallel_safe=True)

print "[%d] Creating populations" % node
n_spikes = int(2*tstop*input_rate/1000.0)
spike_times = numpy.add.accumulate(rng.next(n_spikes, 'exponential',
                                            [1000.0/input_rate], mask_local=False))

input_population  = Population(10, SpikeSourceArray, {'spike_times': spike_times }, label="input")
output_population = Population(10, IF_curr_exp, cell_params, label="output")

g=csa.grid2d(3)
d=csa.euclidMetric2d(g,g)
connector = CSAConnector(csa.cset(csa.random(0.5), csa.gaussian(0.1,1.0)*d, 1.0))

projection = Projection(input_population, output_population, connector, rng=rng)

file_stem = "Results/simpleRandomNetwork_np%d_%s" % (num_processes(), simulator_name)
projection.saveConnections('%s.conn' % file_stem)

output_population.record_v()

print "[%d] Running simulation" % node
run(tstop)

print "[%d] Writing Vm to disk" % node
output_population.print_v('%s.v' % file_stem)