示例#1
0
def test_csa_block_connector():
    MockSimulator.setup()
    try:
        # This creates a block of size (2, 5) with a probability of 0.5; then
        # within the block an individual connection has a probability of 0.3
        connector = CSAConnector(
            csa.block(2, 5) * csa.random(0.5) * csa.random(0.3))
        weight = 1.0
        delay = 2.0
        mock_synapse_info = MockSynapseInfo(MockPopulation(10, "pre"),
                                            MockPopulation(10, "post"), weight,
                                            delay)
        connector.set_projection_information(1000.0, mock_synapse_info)
        pre_vertex_slice = Slice(0, 10)
        post_vertex_slice = Slice(0, 10)
        block = connector.create_synaptic_block([pre_vertex_slice], 0,
                                                [post_vertex_slice], 0,
                                                pre_vertex_slice,
                                                post_vertex_slice, 0,
                                                mock_synapse_info)
        assert (len(block) >= 0)
        assert (all(item["weight"] == 1.0 for item in block))
        assert (all(item["delay"] == 2.0 for item in block))
    except TypeError:
        raise SkipTest("https://github.com/INCF/csa/issues/17")
    except RuntimeError:
        if sys.version_info >= (3, 7):
            raise SkipTest("https://github.com/INCF/csa/issues/16")
        raise
    def _connect(self):
        '''Connect populations.'''

        finite_set = csa.cross(xrange(self._N_s), xrange(self._N_t))
        if self._fan == 'in':
            self._cs = csa.cset(csa.random(fanIn=self._C) * finite_set)
        else:
            self._cs = csa.cset(csa.random(fanOut=self._C) * finite_set)
    def _connect(self):
        '''Connect populations.'''

        finite_set = csa.cross(xrange(self._N_s), xrange(self._N_t))
        if self._fan == 'in':
            cs = csa.cset(csa.random(fanIn=self._C) * finite_set)
        else:
            cs = csa.cset(csa.random(fanOut=self._C) * finite_set)
        nest.CGConnect(self._source_pop, self._target_pop, csa.cset(cs))
def csa_example():

    cs = csa.cset(csa.random(0.1), 10000.0, 1.0)

    pop1 = nest.LayoutNetwork("iaf_neuron", [16])
    pop2 = nest.LayoutNetwork("iaf_neuron", [16])

    nest.PrintNetwork(10)

    nest.CGConnect(pop1, pop2, cs, {"weight": 0, "delay": 1})

    pg = nest.Create("poisson_generator", params={"rate": 80000.0})
    nest.DivergentConnect(pg, nest.GetLeaves(pop1)[0], 1.2, 1.0)

    vm_params = {
        "record_to": ["memory"],
        "withgid": True,
        "withtime": True,
        "interval": 0.1
    }
    vm = nest.Create("voltmeter", params=vm_params)
    nest.DivergentConnect(vm, nest.GetLeaves(pop2)[0])

    nest.Simulate(50.0)

    from nest import visualization
    allnodes = pg + nest.GetLeaves(pop1)[0] + nest.GetLeaves(pop2)[0] + vm
    visualization.plot_network(allnodes, "test_csa.png")

    if havePIL:
        im = Image.open("test_csa.png")
        im.show()

    from nest import voltage_trace
    voltage_trace.from_device(vm)
示例#5
0
def csa_example():

    cs = csa.cset(csa.random(0.1), 10000.0, 1.0)

    pop1 = nest.LayoutNetwork("iaf_neuron", [16])
    pop2 = nest.LayoutNetwork("iaf_neuron", [16])

    nest.PrintNetwork(10)

    nest.CGConnect(pop1, pop2, cs, {"weight": 0, "delay": 1})

    pg = nest.Create("poisson_generator", params={"rate": 80000.0})
    nest.DivergentConnect(pg, nest.GetLeaves(pop1)[0], 1.2, 1.0)

    vm_params = {"record_to": ["memory"], "withgid": True,
                 "withtime": True, "interval": 0.1}
    vm = nest.Create("voltmeter", params=vm_params)
    nest.DivergentConnect(vm, nest.GetLeaves(pop2)[0])

    nest.Simulate(50.0)

    from nest import visualization
    allnodes = pg + nest.GetLeaves(pop1)[0] + nest.GetLeaves(pop2)[0] + vm
    visualization.plot_network(allnodes, "test_csa.png")

    if havePIL:
        im = Image.open("test_csa.png")
        im.show()

    from nest import voltage_trace
    voltage_trace.from_device(vm)
示例#6
0
def test_csa_random_connector():
    unittest_setup()
    connector = CSAConnector(csa.random(0.05))
    weight = 1.0
    delay = 2.0
    mock_synapse_info = SynapseInformation(
        connector=None,
        pre_population=MockPopulation(10, "Pre"),
        post_population=MockPopulation(10, "Post"),
        prepop_is_view=False,
        postpop_is_view=False,
        rng=None,
        synapse_dynamics=None,
        synapse_type=None,
        is_virtual_machine=False,
        weights=weight,
        delays=delay)
    connector.set_projection_information(mock_synapse_info)
    pre_vertex_slice = Slice(0, 10)
    post_vertex_slice = Slice(0, 10)
    block = connector.create_synaptic_block([pre_vertex_slice],
                                            [post_vertex_slice],
                                            pre_vertex_slice,
                                            post_vertex_slice, 0,
                                            mock_synapse_info)
    assert (len(block) >= 0)
    assert (all(item["weight"] == 1.0 for item in block))
    assert (all(item["delay"] == 2.0 for item in block))
示例#7
0
def test_csa_block_connector():
    MockSimulator.setup()
    # This creates a block of size (2, 5) with a probability of 0.5; then
    # within the block an individual connection has a probability of 0.3
    connector = CSAConnector(
        csa.block(2, 5) * csa.random(0.5) * csa.random(0.3))
    connector.set_projection_information(
        MockPopulation(10, "pre"), MockPopulation(10, "post"),
        MockRNG(), 1000.0)
    pre_vertex_slice = Slice(0, 10)
    post_vertex_slice = Slice(0, 10)
    block = connector.create_synaptic_block(
        1.0, 2.0, [pre_vertex_slice], 0, [post_vertex_slice], 0,
        pre_vertex_slice, post_vertex_slice, 0)
    assert(len(block) >= 0)
    assert(all(item["weight"] == 1.0 for item in block))
    assert(all(item["delay"] == 2.0 for item in block))
示例#8
0
def test_csa_block_connector():
    unittest_setup()
    try:
        # This creates a block of size (2, 5) with a probability of 0.5; then
        # within the block an individual connection has a probability of 0.3
        connector = CSAConnector(
            csa.block(2, 5) * csa.random(0.5) * csa.random(0.3))
        weight = 1.0
        delay = 2.0
        mock_synapse_info = SynapseInformation(
            connector=None,
            pre_population=MockPopulation(10, "Pre"),
            post_population=MockPopulation(10, "Post"),
            prepop_is_view=False,
            postpop_is_view=False,
            rng=None,
            synapse_dynamics=None,
            synapse_type=None,
            receptor_type=None,
            is_virtual_machine=False,
            synapse_type_from_dynamics=False,
            weights=weight,
            delays=delay)

        connector.set_projection_information(mock_synapse_info)
        pre_vertex_slice = Slice(0, 10)
        post_vertex_slice = Slice(0, 10)
        block = connector.create_synaptic_block([pre_vertex_slice], 0,
                                                [post_vertex_slice], 0,
                                                pre_vertex_slice,
                                                post_vertex_slice, 0,
                                                mock_synapse_info)
        assert (len(block) >= 0)
        assert (all(item["weight"] == 1.0 for item in block))
        assert (all(item["delay"] == 2.0 for item in block))
    except TypeError as e:
        raise SkipTest("https://github.com/INCF/csa/issues/17") from e
    except RuntimeError as e:
        if sys.version_info >= (3, 7):
            raise SkipTest("https://github.com/INCF/csa/issues/16") from e
        raise e
示例#9
0
def test_csa_random_connector():
    MockSimulator.setup()
    connector = CSAConnector(csa.random(0.05))
    connector.set_projection_information(
        MockPopulation(10, "pre"), MockPopulation(10, "post"),
        MockRNG(), 1000.0)
    pre_vertex_slice = Slice(0, 10)
    post_vertex_slice = Slice(0, 10)
    block = connector.create_synaptic_block(
        1.0, 2.0, [pre_vertex_slice], 0, [post_vertex_slice], 0,
        pre_vertex_slice, post_vertex_slice, 0)
    assert(len(block) >= 0)
    assert(all(item["weight"] == 1.0 for item in block))
    assert(all(item["delay"] == 2.0 for item in block))
示例#10
0
def csa_example():

    cs = csa.cset(csa.random(0.1), 10000.0, 1.0)

    # This does not work yet, as the implementation does not yet
    # support nested subnets.
    #
    #pop1 = nest.LayoutNetwork("iaf_neuron", [4,4])
    #pop2 = nest.LayoutNetwork("iaf_neuron", [4,4])

    pop1 = nest.LayoutNetwork("iaf_neuron", [16])
    pop2 = nest.LayoutNetwork("iaf_neuron", [16])

    nest.PrintNetwork(10)

    nest.CGConnect(pop1, pop2, cs, {"weight": 0, "delay": 1})

    pg = nest.Create("poisson_generator", params={"rate": 80000.0})
    nest.DivergentConnect(pg, nest.GetLeaves(pop1)[0], 1.2, 1.0)

    vm = nest.Create("voltmeter",
                     params={
                         "record_to": ["memory"],
                         "withgid": True,
                         "withtime": True,
                         "interval": 0.1
                     })
    nest.DivergentConnect(vm, nest.GetLeaves(pop2)[0])

    nest.Simulate(50.0)

    # Not yet supported in NEST
    #from nest import visualization
    #allnodes = [pg, nest.GetLeaves(pop1)[0], nest.GetLeaves(pop2)[0], vm]
    #visualization.plot_network(allnodes, "test_csa.png", "png", plot_modelnames=True

    #if havePIL:
    #    im = Image.open("test_csa.png")
    #    im.show()

    from nest import voltage_trace
    voltage_trace.from_device(vm)
示例#11
0
def csa_example():

    cs = csa.cset(csa.random(0.1), 10000.0, 1.0)

    # This does not work yet, as the implementation does not yet
    # support nested subnets.
    #
    # pop1 = nest.LayoutNetwork("iaf_neuron", [4,4])
    # pop2 = nest.LayoutNetwork("iaf_neuron", [4,4])

    pop1 = nest.LayoutNetwork("iaf_neuron", [16])
    pop2 = nest.LayoutNetwork("iaf_neuron", [16])

    nest.PrintNetwork(10)

    nest.CGConnect(pop1, pop2, cs, {"weight": 0, "delay": 1})

    pg = nest.Create("poisson_generator", params={"rate": 80000.0})
    nest.DivergentConnect(pg, nest.GetLeaves(pop1)[0], 1.2, 1.0)

    vm = nest.Create("voltmeter", params={"record_to": ["memory"], "withgid": True, "withtime": True, "interval": 0.1})
    nest.DivergentConnect(vm, nest.GetLeaves(pop2)[0])

    nest.Simulate(50.0)

    # Not yet supported in NEST
    # from nest import visualization
    # allnodes = [pg, nest.GetLeaves(pop1)[0], nest.GetLeaves(pop2)[0], vm]
    # visualization.plot_network(allnodes, "test_csa.png", "png", plot_modelnames=True

    # if havePIL:
    #    im = Image.open("test_csa.png")
    #    im.show()

    from nest import voltage_trace

    voltage_trace.from_device(vm)
示例#12
0
print "[%d] Creating populations" % node
n_spikes = int(2 * tstop * input_rate / 1000.0)
spike_times = numpy.add.accumulate(
    rng.next(n_spikes, 'exponential', [1000.0 / input_rate], mask_local=False))

input_population = Population(100,
                              SpikeSourceArray(spike_times=spike_times),
                              label="input")
output_population = Population(10, IF_curr_exp(**cell_params), label="output")
print "[%d] input_population cells: %s" % (node, input_population.local_cells)
print "[%d] output_population cells: %s" % (node,
                                            output_population.local_cells)

print "[%d] Connecting populations" % node
timer.start()
connector = CSAConnector(csa.random(0.5), weights=0.1)
#connector = CSAConnector(csa.cset(csa.random(0.5), 0.123, 1.6))
projection = Projection(input_population, output_population, connector,
                        StaticSynapse())
print connector.describe(), timer.elapsedTime()

file_stem = "Results/simpleRandomNetwork_csa_np%d_%s" % (num_processes(),
                                                         simulator_name)

projection.save('all', '%s.conn' % file_stem)

input_population.record('spikes')
output_population.record('spikes')
output_population.sample(n_record, rng).record('v')

print "[%d] Running simulation" % node
from time import time
from sys import argv, exit
from pyNN.nest import setup, Population, IF_cond_alpha, CSAConnector, Projection, nest
import csa

if len(argv) != 3:
    print "usage: nest_CSAConnector_csa_scaling.py <num_neurons> <num_procs>"
    exit()

n = int(argv[1])
np = int(argv[2])
setup(timestep=0.1, min_delay=0.1, max_delay=4.0)
pop = Population(n, IF_cond_alpha, {})

# measure random connectivity
start = time()
cset = csa.random(0.1)
connector = CSAConnector(cset)
proj = Projection(pop, pop, connector)

rank = nest.Rank()
nc = nest.GetKernelStatus("num_connections")
nest.sli_run("preptime"); preptime = nest.sli_pop()
nest.sli_run("itertime"); itertime = nest.sli_pop()
print "nest CSAConnector random(0.1) csa %i %i %f %f %f %i %i" % (n, nc, time() - start, preptime, itertime, rank, np)

#import nest.visualization as vis
#vis.plot_network(pop.all_cells, "nest_CSAConnector_csa_scaling.pdf")
示例#14
0
    ext_conn = sim.FixedProbabilityConnector(rconn)
    ext_syn = sim.StaticSynapse(weight=0.1)

print("%s Initialising membrane potential to random values..." % node_id)
rng = NumpyRNG(seed=rngseed, parallel_safe=parallel_safe)
uniformDistr = RandomDistribution('uniform', low=v_reset, high=v_thresh, rng=rng)
if options.use_views:
    all_cells.initialize(v=uniformDistr)
else:
    exc_cells.initialize(v=uniformDistr)
    inh_cells.initialize(v=uniformDistr)

print("%s Connecting populations..." % node_id)
progress_bar = ProgressBar(width=20)
if options.use_csa:
    connector = CSAConnector(csa.cset(csa.random(pconn)))
else:
    connector = sim.FixedProbabilityConnector(pconn, rng=rng, callback=progress_bar)
exc_syn = sim.StaticSynapse(weight=w_exc, delay=delay)
inh_syn = sim.StaticSynapse(weight=w_inh, delay=delay)

connections = {}
if options.use_views or options.use_assembly:
    connections['exc'] = sim.Projection(exc_cells, all_cells, connector, exc_syn, receptor_type='excitatory')
    connections['inh'] = sim.Projection(inh_cells, all_cells, connector, inh_syn, receptor_type='inhibitory')
    if (options.benchmark == "COBA"):
        connections['ext'] = sim.Projection(ext_stim, all_cells, ext_conn, ext_syn, receptor_type='excitatory')
else:
    connections['e2e'] = sim.Projection(exc_cells, exc_cells, connector, exc_syn, receptor_type='excitatory')
    connections['e2i'] = sim.Projection(exc_cells, inh_cells, connector, exc_syn, receptor_type='excitatory')
    connections['i2e'] = sim.Projection(inh_cells, exc_cells, connector, inh_syn, receptor_type='inhibitory')
示例#15
0
                              'rate': rate,
                              'duration': stim_dur
                          },
                          label="expoisson")
    rconn = 0.01
    ext_conn = FixedProbabilityConnector(rconn, weights=0.1)

print "%s Initialising membrane potential to random values..." % node_id
rng = NumpyRNG(seed=rngseed, parallel_safe=parallel_safe)
uniformDistr = RandomDistribution('uniform', [v_reset, v_thresh], rng=rng)
all_cells.initialize('v', uniformDistr)

print "%s Connecting populations..." % node_id
#exc_conn = FixedProbabilityConnector(pconn, weights=w_exc, delays=delay)
#inh_conn = FixedProbabilityConnector(pconn, weights=w_inh, delays=delay)
exc_conn = CSAConnector(csa.cset(csa.random(pconn), w_exc, delay))
inh_conn = CSAConnector(csa.cset(csa.random(pconn), w_inh, delay))

connections = {}
connections['exc'] = Projection(exc_cells,
                                all_cells,
                                exc_conn,
                                target='excitatory',
                                rng=rng)
connections['inh'] = Projection(inh_cells,
                                all_cells,
                                inh_conn,
                                target='inhibitory',
                                rng=rng)
if (benchmark == "COBA"):
    connections['ext'] = Projection(ext_stim,
示例#16
0
def do_run(plot):

    runtime = 3000
    p.setup(timestep=1.0, min_delay=1.0, max_delay=144.0)
    nNeurons = 200  # number of neurons in each population
    p.set_number_of_neurons_per_core(p.IF_curr_exp, nNeurons / 10)

    cell_params_lif = {
        'cm': 0.25,
        'i_offset': 0.0,
        'tau_m': 20.0,
        'tau_refrac': 2.0,
        'tau_syn_E': 5.0,
        'tau_syn_I': 5.0,
        'v_reset': -70.0,
        'v_rest': -65.0,
        'v_thresh': -50.0
    }

    populations = list()
    projections = list()

    weight_to_spike = 2.0
    delay = 10

    # connection list in a loop for first population
    loopConnections = []
    for i in range(0, nNeurons):
        singleConnection = ((i, (i + 1) % nNeurons))
        loopConnections.append(singleConnection)

    # injection list to set the chain going
    injectionConnection = [(0, 0)]
    spikeArray = {'spike_times': [[0]]}

    # list of populations
    populations.append(
        p.Population(nNeurons, p.IF_curr_exp(**cell_params_lif),
                     label='pop_1'))
    populations.append(
        p.Population(nNeurons, p.IF_curr_exp(**cell_params_lif),
                     label='pop_2'))
    populations.append(
        p.Population(nNeurons, p.IF_curr_exp(**cell_params_lif),
                     label='pop_3'))
    populations.append(
        p.Population(nNeurons, p.IF_curr_exp(**cell_params_lif),
                     label='pop_4'))
    populations.append(
        p.Population(1,
                     p.SpikeSourceArray(**spikeArray),
                     label='inputSpikes_1'))

    # Loop connector: we can just pass in the list we made earlier
    CSA_loop_connector = p.CSAConnector(loopConnections)

    # random connector: each connection has a probability of 0.05
    CSA_random_connector = p.CSAConnector(csa.random(0.05))

    # one-to-one connector: do I really need to explain?
    CSA_onetoone_connector = p.CSAConnector(csa.oneToOne)

    # This creates a block of size (5,10) with a probability of 0.05; then
    # within the block an individual connection has a probability of 0.3
    csa_block_random = csa.block(15, 10) * csa.random(0.05) * csa.random(0.3)
    CSA_randomblock_connector = p.CSAConnector(csa_block_random)

    # list of projections using the connectors above
    projections.append(
        p.Projection(populations[0], populations[0], CSA_loop_connector,
                     p.StaticSynapse(weight=weight_to_spike, delay=delay)))
    projections.append(
        p.Projection(populations[0], populations[1], CSA_random_connector,
                     p.StaticSynapse(weight=weight_to_spike, delay=delay)))
    projections.append(
        p.Projection(populations[1], populations[2], CSA_onetoone_connector,
                     p.StaticSynapse(weight=weight_to_spike, delay=delay)))
    projections.append(
        p.Projection(populations[2], populations[3], CSA_randomblock_connector,
                     p.StaticSynapse(weight=weight_to_spike, delay=delay)))
    projections.append(
        p.Projection(populations[4], populations[0],
                     p.FromListConnector(injectionConnection),
                     p.StaticSynapse(weight=weight_to_spike, delay=1)))

    populations[0].record(['v', 'spikes'])
    populations[1].record(['v', 'spikes'])
    populations[2].record(['v', 'spikes'])
    populations[3].record(['v', 'spikes'])

    p.run(runtime)

    # get data (could be done as one, but can be done bit by bit as well)
    v = populations[0].spinnaker_get_data('v')
    v2 = populations[1].spinnaker_get_data('v')
    v3 = populations[2].spinnaker_get_data('v')
    v4 = populations[3].spinnaker_get_data('v')
    spikes = populations[0].spinnaker_get_data('spikes')
    spikes2 = populations[1].spinnaker_get_data('spikes')
    spikes3 = populations[2].spinnaker_get_data('spikes')
    spikes4 = populations[3].spinnaker_get_data('spikes')

    if plot:
        # Use the show functionality of CSA to display connection sets
        CSA_loop_connector.show_connection_set()
        CSA_random_connector.show_connection_set()
        CSA_onetoone_connector.show_connection_set()
        CSA_randomblock_connector.show_connection_set()

        # Now plot some spikes
        pylab.figure()
        pylab.plot([i[1] for i in spikes], [i[0] for i in spikes], "r.")
        pylab.xlabel('Time/ms')
        pylab.ylabel('spikes')
        pylab.title('spikes: population 1')

        pylab.show()

        pylab.figure()
        pylab.plot([i[1] for i in spikes3], [i[0] for i in spikes3], "g.")
        pylab.plot([i[1] for i in spikes4], [i[0] for i in spikes4], "r.")
        pylab.plot([i[1] for i in spikes2], [i[0] for i in spikes2], "b.")
        pylab.xlabel('Time/ms')
        pylab.ylabel('spikes')
        pylab.title('spikes: populations 2, 3, 4')

        pylab.show()

    p.end()

    return v, v2, v3, v4, spikes, spikes2, spikes3, spikes4
rng = NumpyRNG(seed=seed, parallel_safe=True)

print "[%d] Creating populations" % node
n_spikes = int(2*tstop*input_rate/1000.0)
spike_times = numpy.add.accumulate(rng.next(n_spikes, 'exponential',
                                            [1000.0/input_rate], mask_local=False))

input_population  = Population(100, SpikeSourceArray(spike_times=spike_times), label="input")
output_population = Population(10, IF_curr_exp(**cell_params), label="output")
print "[%d] input_population cells: %s" % (node, input_population.local_cells)
print "[%d] output_population cells: %s" % (node, output_population.local_cells)

print "[%d] Connecting populations" % node
timer.start()
connector = CSAConnector(csa.random(0.5), weights=0.1)
#connector = CSAConnector(csa.cset(csa.random(0.5), 0.123, 1.6))
projection = Projection(input_population, output_population, connector, StaticSynapse())
print connector.describe(), timer.elapsedTime()

file_stem = "Results/simpleRandomNetwork_csa_np%d_%s" % (num_processes(), simulator_name)

projection.save('all', '%s.conn' % file_stem)

input_population.record('spikes')
output_population.record('spikes')
output_population.sample(n_record, rng).record('v')

print "[%d] Running simulation" % node
run(tstop)
    def _connect(self):
        '''Connect populations.'''

        finite_set = csa.cross(xrange(self._N_s), xrange(self._N_t))
        self._cs = csa.cset(csa.random(p=self._p) * finite_set)
示例#19
0
    import csa
    haveCSA = True
except ImportError:
    print(
        "This example requires CSA to be installed in order to run.\n" +
        "Please make sure you compiled NEST using --with-libneurosim=PATH\n" +
        "and CSA and libneurosim are available from PYTHONPATH.")
    import sys
    sys.exit()
"""
To set up the connectivity, We create a ``random`` connection set
with a probability of 0.1 and two associated values (10000.0 and 1.0)
used as weight and delay, respectively.
"""

cs = csa.cset(csa.random(0.1), 10000.0, 1.0)
"""
Using the `Create` command from PyNEST, we create the neurons of
the pre- and postsynaptic populations, each of which containing 16
neurons.
"""

pre = nest.Create("iaf_neuron", 16)
post = nest.Create("iaf_neuron", 16)
"""
We can now connect the populations using the `CGConnect` function.
It takes the IDs of pre- and postsynaptic neurons (``pre`` and
``post``), the connection set (``cs``) and a dictionary that maps
the parameters weight and delay to positions in the value set
associated with the connection set.
"""
示例#20
0
rng = NumpyRNG(seed=seed, parallel_safe=True)

print "[%d] Creating populations" % node
n_spikes = int(2*tstop*input_rate/1000.0)
spike_times = numpy.add.accumulate(rng.next(n_spikes, 'exponential',
                                            {'beta': 1000.0/input_rate}, mask_local=False))

input_population  = Population(100, SpikeSourceArray(spike_times=spike_times), label="input")
output_population = Population(10, IF_curr_exp(**cell_params), label="output")
print "[%d] input_population cells: %s" % (node, input_population.local_cells)
print "[%d] output_population cells: %s" % (node, output_population.local_cells)

print "[%d] Connecting populations" % node
timer.start()
connector = CSAConnector(csa.random(0.5))
syn = StaticSynapse(weight=0.1)
projection = Projection(input_population, output_population, connector, syn)
print connector.describe(), timer.elapsedTime()

file_stem = "Results/simpleRandomNetwork_csa_np%d_%s" % (num_processes(), simulator_name)

projection.save('all', '%s.conn' % file_stem)

input_population.record('spikes')
output_population.record('spikes')
output_population.sample(n_record, rng).record('v')

print "[%d] Running simulation" % node
run(tstop)
示例#21
0
rng = NumpyRNG(seed=seed, parallel_safe=True)

print("[%d] Creating populations" % node)
n_spikes = int(2 * tstop * input_rate / 1000.0)
spike_times = numpy.add.accumulate(rng.next(n_spikes, 'exponential',
                                            {'beta': 1000.0 / input_rate}, mask_local=False))

input_population = Population(100, SpikeSourceArray(spike_times=spike_times), label="input")
output_population = Population(10, IF_curr_exp(**cell_params), label="output")
print("[%d] input_population cells: %s" % (node, input_population.local_cells))
print("[%d] output_population cells: %s" % (node, output_population.local_cells))

print("[%d] Connecting populations" % node)
timer.start()
connector = CSAConnector(csa.random(0.5))
syn = StaticSynapse(weight=0.1)
projection = Projection(input_population, output_population, connector, syn)
print(connector.describe(), timer.elapsedTime())

file_stem = "Results/simpleRandomNetwork_csa_np%d_%s" % (num_processes(), simulator_name)

projection.save('all', '%s.conn' % file_stem)

input_population.record('spikes')
output_population.record('spikes')
output_population.sample(n_record, rng).record('v')

print("[%d] Running simulation" % node)
run(tstop)
示例#22
0
    import csa
    haveCSA = True
except ImportError:
    print("This example requires CSA to be installed in order to run.\n"
          + "Please make sure you compiled NEST using --with-libneurosim=PATH\n"
          + "and CSA and libneurosim are available from PYTHONPATH.")
    import sys
    sys.exit()

"""
To set up the connectivity, We create a ``random`` connection set
with a probability of 0.1 and two associated values (10000.0 and 1.0)
used as weight and delay, respectively.
"""

cs = csa.cset(csa.random(0.1), 10000.0, 1.0)

"""
Using the `Create` command from PyNEST, we create the neurons of
the pre- and postsynaptic populations, each of which containing 16
neurons.
"""

pre = nest.Create("iaf_neuron", 16)
post = nest.Create("iaf_neuron", 16)

"""
We can now connect the populations using the `CGConnect` function.
It takes the IDs of pre- and postsynaptic neurons (``pre`` and
``post``), the connection set (``cs``) and a dictionary that maps
the parameters weight and delay to positions in the value set
示例#23
0
exc_cells = all_cells[:n_exc]
inh_cells = all_cells[n_exc:]
if benchmark == "COBA":
    ext_stim = Population(20, SpikeSourcePoisson, {'rate' : rate, 'duration' : stim_dur}, label="expoisson")
    rconn = 0.01
    ext_conn = FixedProbabilityConnector(rconn, weights=0.1)

print "%s Initialising membrane potential to random values..." % node_id
rng = NumpyRNG(seed=rngseed, parallel_safe=parallel_safe)
uniformDistr = RandomDistribution('uniform', [v_reset,v_thresh], rng=rng)
all_cells.initialize('v', uniformDistr)

print "%s Connecting populations..." % node_id
#exc_conn = FixedProbabilityConnector(pconn, weights=w_exc, delays=delay)
#inh_conn = FixedProbabilityConnector(pconn, weights=w_inh, delays=delay)
exc_conn = CSAConnector(csa.cset (csa.random (pconn), w_exc, delay))
inh_conn = CSAConnector(csa.cset (csa.random (pconn), w_inh, delay))

connections={}
connections['exc'] = Projection(exc_cells, all_cells, exc_conn, target='excitatory', rng=rng)
connections['inh'] = Projection(inh_cells, all_cells, inh_conn, target='inhibitory', rng=rng)
if (benchmark == "COBA"):
    connections['ext'] = Projection(ext_stim, all_cells, ext_conn, target='excitatory')

# === Setup recording ==========================================================
print "%s Setting up recording..." % node_id
all_cells.record()
vrecord_list = [exc_cells[0],exc_cells[1]]
exc_cells.record_v(vrecord_list)

buildCPUTime = timer.diff()
示例#24
0
    def _connect(self):
        '''Connect populations.'''

        finite_set = csa.cross(xrange(self._N_s), xrange(self._N_t))
        cs = csa.cset(csa.random(p=self._p) * finite_set)
        nest.CGConnect(self._source_pop, self._target_pop, csa.cset(cs))
示例#25
0
print("%s Initialising membrane potential to random values..." % node_id)
rng = NumpyRNG(seed=rngseed, parallel_safe=parallel_safe)
uniformDistr = RandomDistribution('uniform',
                                  low=v_reset,
                                  high=v_thresh,
                                  rng=rng)
if options.use_views:
    all_cells.initialize(v=uniformDistr)
else:
    exc_cells.initialize(v=uniformDistr)
    inh_cells.initialize(v=uniformDistr)

print("%s Connecting populations..." % node_id)
progress_bar = ProgressBar(width=20)
if options.use_csa:
    connector = sim.CSAConnector(csa.cset(csa.random(pconn)))
else:
    connector = sim.FixedProbabilityConnector(pconn,
                                              rng=rng,
                                              callback=progress_bar)
exc_syn = sim.StaticSynapse(weight=w_exc, delay=delay)
inh_syn = sim.StaticSynapse(weight=w_inh, delay=delay)

connections = {}
if options.use_views or options.use_assembly:
    connections['exc'] = sim.Projection(exc_cells,
                                        all_cells,
                                        connector,
                                        exc_syn,
                                        receptor_type='excitatory')
    connections['inh'] = sim.Projection(inh_cells,
示例#26
0
    ext_stim = Population(20, SpikeSourcePoisson(rate=rate, duration=stim_dur), label="expoisson")
    rconn = 0.01
    ext_conn = FixedProbabilityConnector(rconn)
    syn = StaticSynapse(weight=0.1)

print "%s Initialising membrane potential to random values..." % node_id
rng = NumpyRNG(seed=rngseed, parallel_safe=parallel_safe)
uniformDistr = RandomDistribution('uniform', low=v_reset, high=v_thresh, rng=rng)
all_cells.initialize(v=uniformDistr)

print "%s Connecting populations..." % node_id
#exc_conn = FixedProbabilityConnector(pconn, weights=w_exc, delays=delay)
#inh_conn = FixedProbabilityConnector(pconn, weights=w_inh, delays=delay)
exc_syn = StaticSynapse(weight=w_exc, delay=delay)
inh_syn = StaticSynapse(weight=w_inh, delay=delay)
exc_conn = CSAConnector(csa.cset (csa.random (pconn)))
inh_conn = CSAConnector(csa.cset (csa.random (pconn)))

connections={}
connections['exc'] = Projection(exc_cells, all_cells, exc_conn, exc_syn, receptor_type='excitatory')
connections['inh'] = Projection(inh_cells, all_cells, inh_conn, inh_syn, receptor_type='inhibitory')
if (benchmark == "COBA"):
    connections['ext'] = Projection(ext_stim, all_cells, ext_conn, syn, receptor_type='excitatory')

# === Setup recording ==========================================================
print "%s Setting up recording..." % node_id
all_cells.record('spikes')
exc_cells[0:2].record('v')

buildCPUTime = timer.diff()
示例#27
0
print "Process with rank %d running on %s" % (node, socket.gethostname())


rng = NumpyRNG(seed=seed, parallel_safe=True)

print "[%d] Creating populations" % node
n_spikes = int(2*tstop*input_rate/1000.0)
spike_times = numpy.add.accumulate(rng.next(n_spikes, 'exponential',
                                            [1000.0/input_rate], mask_local=False))

input_population  = Population(10, SpikeSourceArray, {'spike_times': spike_times }, label="input")
output_population = Population(10, IF_curr_exp, cell_params, label="output")

g=csa.grid2d(3)
d=csa.euclidMetric2d(g,g)
connector = CSAConnector(csa.cset(csa.random(0.5), csa.gaussian(0.1,1.0)*d, 1.0))

projection = Projection(input_population, output_population, connector, rng=rng)

file_stem = "Results/simpleRandomNetwork_np%d_%s" % (num_processes(), simulator_name)
projection.saveConnections('%s.conn' % file_stem)

output_population.record_v()

print "[%d] Running simulation" % node
run(tstop)

print "[%d] Writing Vm to disk" % node
output_population.print_v('%s.v' % file_stem)

print "[%d] Finishing" % node