示例#1
0
def solve_slitherlink(height, width, problem):
    solver = Solver()
    grid_frame = BoolGridFrame(solver, height, width)
    solver.add_answer_key(grid_frame)
    graph.active_edges_single_cycle(solver, grid_frame)
    for y in range(height):
        for x in range(width):
            if problem[y][x] >= 0:
                solver.ensure(
                    count_true(grid_frame.cell_neighbors(y, x)) == problem[y]
                    [x])
    is_sat = solver.solve()
    return is_sat, grid_frame
示例#2
0
def solve_geradeweg(height, width, problem):
    def line_length(edges):
        edges = list(edges)
        if len(edges) == 0:
            return 0
        ret = edges[-1].cond(1, 0)
        for i in range(len(edges) - 2, -1, -1):
            ret = edges[i].cond(1 + ret, 0)
        return ret

    solver = Solver()
    grid_frame = BoolGridFrame(solver, height - 1, width - 1)
    solver.add_answer_key(grid_frame)
    is_passed = graph.active_edges_single_cycle(solver, grid_frame)

    for y in range(height):
        for x in range(width):
            if problem[y][x] >= 1:
                solver.ensure(is_passed[y, x])
                solver.ensure(fold_or(([grid_frame.horizontal[y, x - 1]] if x > 0 else []) + ([grid_frame.horizontal[y, x]] if x < width - 1 else [])).then(
                    line_length(reversed(list(grid_frame.horizontal[y, :x]))) + line_length(grid_frame.horizontal[y, x:]) == problem[y][x]
                ))
                solver.ensure(fold_or(([grid_frame.vertical[y - 1, x]] if y > 0 else []) + ([grid_frame.vertical[y, x]] if y < height - 1 else [])).then(
                    line_length(reversed(list(grid_frame.vertical[:y, x]))) + line_length(grid_frame.vertical[y:, x]) == problem[y][x]
                ))

    is_sat = solver.solve()
    return is_sat, grid_frame
示例#3
0
文件: masyu.py 项目: bay-puz/cspuz
def solve_masyu(height, width, problem):
    solver = Solver()
    grid_frame = BoolGridFrame(solver, height - 1, width - 1)
    solver.add_answer_key(grid_frame)
    graph.active_edges_single_cycle(solver, grid_frame)

    def get_edge(y, x, neg=False):
        if 0 <= y <= 2 * (height - 1) and 0 <= x <= 2 * (width - 1):
            if y % 2 == 0:
                r = grid_frame.horizontal[y // 2][x // 2]
            else:
                r = grid_frame.vertical[y // 2][x // 2]
            if neg:
                return ~r
            else:
                return r
        else:
            return neg

    for y in range(height):
        for x in range(width):
            if problem[y][x] == 1:
                solver.ensure(
                    (get_edge(y * 2, x * 2 - 1) & get_edge(y * 2, x * 2 + 1)
                     & (get_edge(y * 2, x * 2 - 3, True)
                        | get_edge(y * 2, x * 2 + 3, True)))
                    | (get_edge(y * 2 - 1, x * 2) & get_edge(y * 2 + 1, x * 2)
                       & (get_edge(y * 2 - 3, x * 2, True)
                          | get_edge(y * 2 + 3, x * 2, True))))
            elif problem[y][x] == 2:
                dirs = [
                    get_edge(y * 2, x * 2 - 1) & get_edge(y * 2, x * 2 - 3),
                    get_edge(y * 2 - 1, x * 2) & get_edge(y * 2 - 3, x * 2),
                    get_edge(y * 2, x * 2 + 1) & get_edge(y * 2, x * 2 + 3),
                    get_edge(y * 2 + 1, x * 2) & get_edge(y * 2 + 3, x * 2),
                ]
                solver.ensure((dirs[0] | dirs[2]) & (dirs[1] | dirs[3]))

    is_sat = solver.solve()
    return is_sat, grid_frame
示例#4
0
def solve_castle_wall(height, width, arrow, inside):
    solver = Solver()
    grid_frame = BoolGridFrame(solver, height - 1, width - 1)
    solver.add_answer_key(grid_frame)
    passed = graph.active_edges_single_cycle(solver, grid_frame)

    # arrow constraints
    for y in range(height):
        for x in range(width):
            if arrow[y][x] == '..':
                continue
            solver.ensure(~passed[y, x])
            if arrow[y][x][0] == '^':
                related_edges = grid_frame.vertical[:y, x]
            elif arrow[y][x][0] == 'v':
                related_edges = grid_frame.vertical[y:, x]
            elif arrow[y][x][0] == '<':
                related_edges = grid_frame.horizontal[y, :x]
            elif arrow[y][x][0] == '>':
                related_edges = grid_frame.horizontal[y, x:]
            else:
                continue
            solver.ensure(count_true(related_edges) == int(arrow[y][x][1:]))

    # inout constraints
    is_inside = solver.bool_array((height - 1, width - 1))
    for y in range(height - 1):
        for x in range(width - 1):
            if y == 0:
                solver.ensure(is_inside[y, x] == grid_frame[0, x * 2 + 1])
            else:
                solver.ensure(is_inside[y, x] == (
                    is_inside[y - 1, x] != grid_frame[y * 2, x * 2 + 1]))
    for y in range(height):
        for x in range(width):
            if inside[y][x] is True:
                solver.ensure(is_inside[max(0, y - 1), max(0, x - 1)])
            elif inside[y][x] is False:
                solver.ensure(~is_inside[max(0, y - 1), max(0, x - 1)])
    is_sat = solver.solve()

    return is_sat, grid_frame
示例#5
0
def solve_simpleloop(height, width, blocked, pivot):
    solver = Solver()
    grid_frame = BoolGridFrame(solver, height - 1, width - 1)
    solver.add_answer_key(grid_frame)
    is_passed = graph.active_edges_single_cycle(solver, grid_frame)

    for y in range(height):
        for x in range(width):
            if (y, x) != pivot:
                solver.ensure(is_passed[y, x] == (blocked[y][x] == 0))

    py, px = pivot
    n_pass = 0
    for y in range(height):
        for x in range(width):
            if (y, x) != pivot and blocked[y][x] == 0:
                n_pass += 1
    solver.ensure(is_passed[py, px] == (n_pass % 2 == 1))
    is_sat = solver.solve()
    return is_sat, grid_frame
示例#6
0
def solve_yajilin(height, width, problem):
    solver = Solver()
    grid_frame = BoolGridFrame(solver, height - 1, width - 1)
    is_passed = graph.active_edges_single_cycle(solver, grid_frame)
    black_cell = solver.bool_array((height, width))
    graph.active_vertices_not_adjacent(solver, black_cell)
    solver.add_answer_key(grid_frame)
    solver.add_answer_key(black_cell)

    for y in range(height):
        for x in range(width):
            if problem[y][x] != '..':
                # clue
                solver.ensure(~is_passed[y, x])
                solver.ensure(~black_cell[y, x])

                if problem[y][x][0] == '^':
                    solver.ensure(
                        count_true(black_cell[0:y,
                                              x]) == int(problem[y][x][1:]))
                elif problem[y][x][0] == 'v':
                    solver.ensure(
                        count_true(black_cell[(y + 1):height,
                                              x]) == int(problem[y][x][1:]))
                elif problem[y][x][0] == '<':
                    solver.ensure(
                        count_true(black_cell[y,
                                              0:x]) == int(problem[y][x][1:]))
                elif problem[y][x][0] == '>':
                    solver.ensure(
                        count_true(black_cell[y, (
                            x + 1):width]) == int(problem[y][x][1:]))
            else:
                solver.ensure(is_passed[y, x] != black_cell[y, x])

    is_sat = solver.solve()
    return is_sat, grid_frame, black_cell
示例#7
0
def solve_slalom(height,
                 width,
                 origin,
                 is_black,
                 gates,
                 reference_sol_loop=None):
    solver = Solver()
    loop = BoolGridFrame(solver, height - 1, width - 1)
    loop_dir = BoolGridFrame(solver, height - 1, width - 1)
    solver.add_answer_key(loop.all_edges())

    graph.active_edges_single_cycle(solver, loop)

    gate_ord = solver.int_array((height, width), 0, len(gates))
    passed = solver.bool_array((height, width))

    gate_id = [[None for _ in range(width)] for _ in range(height)]
    for y, x, d, l, n in gates:
        if d == 0:  # horizontal
            gate_cells = [(y, x + i) for i in range(l)]
        elif d == 1:  # vertical
            gate_cells = [(y + i, x) for i in range(l)]
        for y2, x2 in gate_cells:
            gate_id[y2][x2] = n
        solver.ensure(
            count_true([passed[y2, x2] for y2, x2 in gate_cells]) == 1)
    solver.ensure(passed[origin])
    for y in range(height):
        for x in range(width):
            neighbors = []
            if y > 0:
                neighbors.append((y - 1, x))
            if y < height - 1:
                neighbors.append((y + 1, x))
            if x > 0:
                neighbors.append((y, x - 1))
            if x < width - 1:
                neighbors.append((y, x + 1))

            # in-degree, out-degree
            solver.ensure(
                count_true([
                    loop[y + y2, x + x2]
                    & (loop_dir[y + y2, x + x2] != ((y2, x2) < (y, x)))
                    for y2, x2 in neighbors
                ]) == passed[y, x].cond(1, 0))
            solver.ensure(
                count_true([
                    loop[y + y2, x + x2]
                    & (loop_dir[y + y2, x + x2] == ((y2, x2) < (y, x)))
                    for y2, x2 in neighbors
                ]) == passed[y, x].cond(1, 0))

            if is_black[y][x]:
                solver.ensure(~passed[y, x])
                continue
            if (y, x) == origin:
                continue
            if gate_id[y][x] is None:
                for y2, x2 in neighbors:
                    solver.ensure((loop[y + y2, x + x2] &
                                   (loop_dir[y + y2, x + x2] !=
                                    ((y2, x2) < (y, x)))).then(
                                        (gate_ord[y2, x2] == gate_ord[y, x])))
            else:
                for y2, x2 in neighbors:
                    solver.ensure((loop[y + y2, x + x2] &
                                   (loop_dir[y + y2, x + x2] !=
                                    ((y2, x2) < (y, x)))).then(
                                        (gate_ord[y2,
                                                  x2] == gate_ord[y, x] - 1)))
                if gate_id[y][x] >= 1:
                    solver.ensure(passed[y,
                                         x].then(gate_ord[y,
                                                          x] == gate_id[y][x]))

    # auxiliary constraint
    for y0 in range(height):
        for x0 in range(width):
            for y1 in range(height):
                for x1 in range(width):
                    if (y0, x0) < (y1, x1) and gate_id[y0][
                            x0] is not None and gate_id[y1][x1] is not None:
                        solver.ensure((passed[y0, x0] & passed[y1, x1]).then(
                            gate_ord[y0, x0] != gate_ord[y1, x1]))

    if reference_sol_loop is not None:
        avoid_reference_sol = []
        for y in range(height):
            for x in range(width):
                if y < height - 1:
                    avoid_reference_sol.append(
                        loop.vertical[y,
                                      x] != reference_sol_loop.vertical[y,
                                                                        x].sol)
                if x < width - 1:
                    avoid_reference_sol.append(loop.horizontal[
                        y, x] != reference_sol_loop.horizontal[y, x].sol)
        solver.ensure(fold_or(avoid_reference_sol))

        is_sat = solver.find_answer()
        return is_sat, loop
    else:
        is_sat = solver.solve()
        return is_sat, loop
示例#8
0
def generate_slalom_initial_placement(height,
                                      width,
                                      n_min_gates=None,
                                      n_max_gates=None,
                                      n_max_isolated_black_cells=None,
                                      no_adjacent_black_cell=False,
                                      no_facing_length_two=False,
                                      no_space_2x2=False,
                                      black_cell_in_every_3x3=False,
                                      min_go_through=0):
    solver = Solver()
    loop = BoolGridFrame(solver, height - 1, width - 1)
    is_black = solver.bool_array((height, width))
    is_horizontal = solver.bool_array((height, width))
    is_vertical = solver.bool_array((height, width))

    solver.ensure(~(is_black & is_horizontal))
    solver.ensure(~(is_black & is_vertical))
    solver.ensure(~(is_horizontal & is_vertical))
    solver.ensure(~(is_horizontal[0, :]))
    solver.ensure(~(is_horizontal[-1, :]))
    solver.ensure(~(is_vertical[:, 0]))
    solver.ensure(~(is_vertical[:, -1]))

    is_passed = graph.active_edges_single_cycle(solver, loop)

    # --------- board must be valid as a problem ---------

    # loop constraints
    for y in range(height):
        for x in range(width):
            if y > 0:
                solver.ensure(is_black[y, x].then(~loop.vertical[y - 1, x]))
                solver.ensure(is_vertical[y, x].then(~loop.vertical[y - 1, x]))
            if y < height - 1:
                solver.ensure(is_black[y, x].then(~loop.vertical[y, x]))
                solver.ensure(is_vertical[y, x].then(~loop.vertical[y, x]))
            if x > 0:
                solver.ensure(is_black[y, x].then(~loop.horizontal[y, x - 1]))
                solver.ensure(
                    is_horizontal[y, x].then(~loop.horizontal[y, x - 1]))
            if x < width - 1:
                solver.ensure(is_black[y, x].then(~loop.horizontal[y, x]))
                solver.ensure(is_horizontal[y, x].then(~loop.horizontal[y, x]))

    # gates must be closed
    solver.ensure(is_vertical[1:, :].then(is_vertical[:-1, :]
                                          | is_black[:-1, :]))
    solver.ensure(is_vertical[:-1, :].then(is_vertical[1:, :]
                                           | is_black[1:, :]))
    solver.ensure(is_horizontal[:, 1:].then(is_horizontal[:, :-1]
                                            | is_black[:, :-1]))
    solver.ensure(is_horizontal[:, :-1].then(is_horizontal[:, 1:]
                                             | is_black[:, 1:]))
    # each horizontal gate must be passed exactly once
    for y in range(1, height - 1):
        for x in range(width):
            on_loop = []
            for x2 in range(width):
                cond = [is_passed[y, x2]]
                if x2 < x:
                    cond += [is_horizontal[y, i] for i in range(x2, x)]
                elif x < x2:
                    cond += [is_horizontal[y, i] for i in range(x + 1, x2 + 1)]
                on_loop.append(fold_and(cond))
            solver.ensure(is_horizontal[y, x].then(count_true(on_loop) == 1))
    # each vertical gate must be passed exactly once
    for y in range(height):
        for x in range(1, width - 1):
            on_loop = []
            for y2 in range(width):
                cond = [is_passed[y2, x]]
                if y2 < y:
                    cond += [is_vertical[i, x] for i in range(y2, y)]
                elif y < y2:
                    cond += [is_vertical[i, x] for i in range(y + 1, y2 + 1)]
                on_loop.append(fold_and(cond))
            solver.ensure(is_vertical[y, x].then(count_true(on_loop) == 1))

    # --------- loop must be canonical ---------

    # for simplicity, no stacked gates (although this is not necessary for the canonicity)
    solver.ensure(~(is_horizontal[:-1, :] & is_horizontal[1:, :]))
    solver.ensure(~(is_vertical[:, :-1] & is_vertical[:, 1:]))
    for y in range(height):
        for x in range(width):
            if 0 < y < height - 1:
                if x == 0 or x == width - 1:
                    solver.ensure(is_horizontal[y,
                                                x].then(~is_black[y - 1, x]
                                                        & ~is_black[y + 1, x]))
                else:
                    solver.ensure((is_horizontal[y, x] &
                                   (is_black[y - 1, x] | is_black[y + 1, x])
                                   ).then(is_horizontal[y, x - 1]
                                          & is_horizontal[y, x + 1]
                                          & ~is_black[y - 1, x - 1]
                                          & ~is_black[y + 1, x - 1]
                                          & ~is_black[y + 1, x - 1]
                                          & ~is_black[y + 1, x + 1]))
            if 0 < x < width - 1:
                if y == 0 or y == height - 1:
                    solver.ensure(is_vertical[y,
                                              x].then(~is_black[y, x - 1]
                                                      & ~is_black[y, x + 1]))
                else:
                    solver.ensure(
                        (is_vertical[y, x] &
                         (is_black[y, x - 1] | is_black[y, x + 1])
                         ).then(is_vertical[y - 1, x] & is_vertical[y + 1, x]
                                & ~is_black[y - 1, x - 1]
                                & ~is_black[y + 1, x - 1]
                                & ~is_black[y + 1, x - 1]
                                & ~is_black[y + 1, x + 1]))

    # no detour
    for y in range(height - 1):
        for x in range(width - 1):
            solver.ensure(count_true(loop.cell_neighbors(y, x)) <= 2)
            solver.ensure(
                fold_and(~is_black[y:y + 2, x:x + 2],
                         ~is_horizontal[y:y + 2, x:x + 2],
                         ~is_vertical[y:y + 2, x:x + 2]).then(
                             count_true(loop.cell_neighbors(y, x)) +
                             1 < count_true(is_passed[y:y + 2, x:x + 2])))

    # no ambiguous L-shaped turning
    for y in range(height - 1):
        for x in range(width - 1):
            for dy in [0, 1]:
                for dx in [0, 1]:
                    solver.ensure(~fold_and([
                        loop.horizontal[y + dy, x], loop.vertical[
                            y, x + dx], ~is_vertical[y + dy, x + 1 - dx],
                        ~is_horizontal[y + 1 - dx, x +
                                       dx], ~is_black[y + 1 - dy, x + 1 - dx],
                        count_true(is_passed[y:y + 2, x:x + 2]) == 3
                    ]))

    # no ambiguous L-shaped turning involving gates
    for y in range(height - 1):
        for x in range(width - 2):
            solver.ensure(
                fold_and(
                    is_vertical[y:y + 2, x + 1],
                    ~is_black[y:y + 2, x:x + 3]).then(
                        count_true(loop.horizontal[y, x], loop.horizontal[
                            y + 1,
                            x], loop.vertical[y, x], loop.vertical[y, x + 2]) +
                        1 < count_true(is_passed[y:y + 2,
                                                 x], is_passed[y:y + 2,
                                                               x + 2])))
    for y in range(height - 2):
        for x in range(width - 1):
            solver.ensure(
                fold_and(is_horizontal[y + 1, x:x + 2],
                         ~is_black[y:y + 3, x:x + 2]).
                then(
                    count_true(loop.vertical[y, x], loop.vertical[y, x + 1],
                               loop.horizontal[y, x], loop.horizontal[y + 2,
                                                                      x]) +
                    1 < count_true(is_passed[y, x:x + 2], is_passed[y + 2,
                                                                    x:x + 2])))

    # no dead ends
    for y in range(height):
        for x in range(width):
            solver.ensure((~is_black[y, x]).then(
                count_true(~is_black.four_neighbors(y, x)) >= 2))

    # --------- avoid "trivial" problems ---------
    solver.ensure(count_true(is_vertical) > 5)
    solver.ensure(count_true(is_horizontal) > 4)

    if n_max_isolated_black_cells is not None:
        lonely_black_cell = []
        for y in range(height):
            for x in range(width):
                cond = [is_black[y, x]]
                if y > 0:
                    cond.append(~is_vertical[y - 1, x])
                if y < height - 1:
                    cond.append(~is_vertical[y + 1, x])
                if x > 0:
                    cond.append(~is_horizontal[y, x - 1])
                if x < width - 1:
                    cond.append(~is_horizontal[y, x + 1])
                lonely_black_cell.append(fold_and(cond))
        solver.ensure(
            count_true(lonely_black_cell) <= n_max_isolated_black_cells)

    short_gates = []
    for y in range(height):
        for x in range(width):
            g1 = fold_and([
                is_vertical[y, x], ~is_vertical[y - 1, x] if y > 0 else True,
                ~is_vertical[y + 1, x] if y < height - 1 else True
            ])
            g2 = fold_and([
                is_horizontal[y,
                              x], ~is_horizontal[y, x - 1] if x > 0 else True,
                ~is_horizontal[y, x + 1] if x < width - 1 else True
            ])
            if 0 < y < height - 1 and 0 < x < width - 1:
                short_gates.append(g1)
                short_gates.append(g2)
                solver.ensure((g1 | g2).then(~is_black[y - 1, x - 1]
                                             & ~is_black[y - 1, x + 1]
                                             & ~is_black[y + 1, x - 1]
                                             & ~is_black[y + 1, x + 1]))
            else:
                solver.ensure(~g1)
                solver.ensure(~g2)
    solver.ensure(count_true(short_gates) <= 0)
    for y in range(1, height - 1):
        for x in range(1, width - 1):
            solver.ensure(
                count_true(
                    is_horizontal[y - 1, x] & is_black[y - 1, x - 1]
                    & is_black[y - 1, x + 1],
                    is_horizontal[y + 1, x] & is_black[y + 1, x - 1]
                    & is_black[y + 1, x + 1],
                    is_vertical[y, x - 1] & is_black[y - 1, x - 1]
                    & is_black[y + 1, x - 1],
                    is_vertical[y, x + 1] & is_black[y - 1, x + 1]
                    & is_black[y + 1, x + 1],
                ) <= 1)
    # --------- ensure randomness ---------

    passed_constraints = [[0 for _ in range(width)] for _ in range(height)]
    for y in range(height):
        for x in range(width):
            if (y > 0 and passed_constraints[y - 1][x] != 0) or (
                    x > 0 and passed_constraints[y][x - 1] != 0):
                continue
            passed_constraints[y][x] = max(0, random.randint(-20, 2))
    for y in range(height):
        for x in range(width):
            if passed_constraints[y][x] == 1:
                solver.ensure(is_passed[y, x])
            elif passed_constraints[y][x] == 2:
                solver.ensure(~is_passed[y, x])

    # --------- extra constraints ---------
    if n_min_gates is not None or n_max_gates is not None:
        gate_representative = []
        for y in range(height):
            for x in range(width):
                gate_representative.append(is_horizontal[y, x] & (
                    ~is_horizontal[y, x - 1] if x > 0 else True))
                gate_representative.append(is_vertical[y, x] & (
                    ~is_vertical[y - 1, x] if y > 0 else True))
        if n_min_gates is not None:
            solver.ensure(n_min_gates <= count_true(gate_representative))
        if n_max_gates is not None:
            solver.ensure(count_true(gate_representative) <= n_max_gates)

    if min_go_through > 0:
        go_through = []
        for y in range(height):
            for x in range(width):
                if y < height - 4 and 0 < x < width - 1:
                    go_through.append(
                        fold_and(
                            is_horizontal[y + 1,
                                          x], is_horizontal[y + 1, x - 1]
                            | is_horizontal[y + 1, x + 1],
                            ~is_black[y + 2, x - 1], ~is_black[y + 2, x + 1],
                            is_horizontal[y + 3,
                                          x], is_horizontal[y + 3, x - 1]
                            | is_horizontal[y + 3, x + 1],
                            loop.vertical[y:y + 4, x]))
                if x < width - 4 and 0 < y < height - 1:
                    go_through.append(
                        fold_and(
                            is_vertical[y, x + 1], is_vertical[y - 1, x + 1]
                            | is_vertical[y + 1, x + 1],
                            ~is_black[y - 1, x + 2], ~is_black[y + 1, x + 2],
                            is_vertical[y, x + 3], is_vertical[y - 1, x + 3]
                            | is_vertical[y + 1, x + 3],
                            loop.horizontal[y, x:x + 4]))
        solver.ensure(count_true(go_through) >= 2)

    if no_adjacent_black_cell:
        solver.ensure(~(is_black[:-1, :] & is_black[1:, :]))
        solver.ensure(~(is_black[:, :-1] & is_black[:, 1:]))
        solver.ensure(~(is_black[:-1, :-1] & is_black[1:, 1:]))
        solver.ensure(~(is_black[:-1, 1:] & is_black[1:, :-1]))

    if no_facing_length_two:
        for y in range(height):
            for x in range(width):
                if y <= height - 3 and x <= width - 4:
                    solver.ensure(~fold_and(
                        is_black[y, x], is_black[y + 2, x], is_black[y, x + 3],
                        is_black[y + 2, x + 3], is_horizontal[
                            y, x + 1], is_horizontal[y, x + 2], is_horizontal[
                                y + 2, x + 1], is_horizontal[y + 2, x + 2]))
                if y <= height - 4 and x <= width - 3:
                    solver.ensure(
                        ~fold_and(is_black[y, x], is_black[y, x + 2], is_black[
                            y + 3, x], is_black[y + 3, x + 2], is_vertical[
                                y + 1, x], is_vertical[y + 2, x], is_vertical[
                                    y + 1, x + 2], is_vertical[y + 2, x + 2]))

    if no_space_2x2:
        has_some = is_black | is_vertical | is_horizontal
        solver.ensure(has_some[:-1, :-1] | has_some[1:, :-1]
                      | has_some[:-1, 1:] | has_some[1:, 1:])

    if black_cell_in_every_3x3:
        for y in range(-1, height - 2):
            for x in range(-1, width - 2):
                solver.ensure(
                    fold_or(is_black[max(0, y):min(height, y + 3),
                                     max(0, x):min(width, x + 3)]))

    is_sat = solver.find_answer()
    if not is_sat:
        return None
    return loop, is_passed, is_black, is_horizontal, is_vertical
示例#9
0
 def single_loop(self):
     from cspuz import graph
     return graph.active_edges_single_cycle(self.solver, self)