def solve_nurimaze(height, width, wall_vertical, wall_horizontal, mark, start, goal): solver = Solver() is_white = solver.bool_array((height, width)) graph.active_vertices_connected(solver, is_white, acyclic=True) solver.add_answer_key(is_white) solver.ensure(is_white[:-1, :-1] | is_white[:-1, 1:] | is_white[1:, :-1] | is_white[1:, 1:]) solver.ensure(~(is_white[:-1, :-1] & is_white[:-1, 1:] & is_white[1:, :-1] & is_white[1:, 1:])) path = solver.bool_array((height, width)) solver.ensure(path.then(is_white)) for y in range(height): for x in range(width): if x < width - 1 and not wall_vertical[y][x]: solver.ensure(is_white[y, x] == is_white[y, x + 1]) if y < height - 1 and not wall_horizontal[y][x]: solver.ensure(is_white[y, x] == is_white[y + 1, x]) if (y, x) == start or (y, x) == goal: solver.ensure(path[y, x]) solver.ensure(count_true(path.four_neighbors(y, x)) == 1) else: solver.ensure( path[y, x].then(count_true(path.four_neighbors(y, x)) == 2)) if mark[y][x] != 0: solver.ensure(is_white[y, x]) if mark[y][x] == 1: # pass solver.ensure(path[y, x]) elif mark[y][x] == 2: solver.ensure(~path[y, x]) is_sat = solver.solve() return is_sat, is_white
def solve_magnets(height, width, to_right, to_down, cond_row, cond_col): solver = Solver() plus = solver.bool_array((height, width)) minus = solver.bool_array((height, width)) solver.add_answer_key(plus) solver.add_answer_key(minus) solver.ensure(~(plus & minus)) solver.ensure( Array(to_right)[:, :-1].then((plus[:, :-1] == minus[:, 1:]) & (minus[:, :-1] == plus[:, 1:]))) solver.ensure( Array(to_down)[:-1, :].then((plus[:-1, :] == minus[1:, :]) & (minus[:-1, :] == plus[1:, :]))) solver.ensure(~(plus[:-1, :] & plus[1:, :])) solver.ensure(~(minus[:-1, :] & minus[1:, :])) solver.ensure(~(plus[:, :-1] & plus[:, 1:])) solver.ensure(~(minus[:, :-1] & minus[:, 1:])) for y in range(height): if cond_row[y][0] >= 0: solver.ensure(count_true(plus[y, :]) == cond_row[y][0]) if cond_row[y][1] >= 0: solver.ensure(count_true(minus[y, :]) == cond_row[y][1]) for x in range(width): if cond_col[x][0] >= 0: solver.ensure(count_true(plus[:, x]) == cond_col[x][0]) if cond_col[x][1] >= 0: solver.ensure(count_true(minus[:, x]) == cond_col[x][1]) is_sat = solver.solve() return is_sat, plus, minus
def solve_fillomino(height, width, problem, checkered=False, is_non_con=False, is_anti_knight=False): solver = Solver() size = solver.int_array((height, width), 1, height * width) solver.add_answer_key(size) group_id = graph.division_connected_variable_groups(solver, group_size=size) solver.ensure( (group_id[:, :-1] == group_id[:, 1:]) == (size[:, :-1] == size[:, 1:])) solver.ensure( (group_id[:-1, :] == group_id[1:, :]) == (size[:-1, :] == size[1:, :])) for y in range(height): for x in range(width): if problem[y][x] >= 1: solver.ensure(size[y, x] == problem[y][x]) if checkered: color = solver.bool_array((height, width)) solver.ensure( (group_id[:, :-1] == group_id[:, 1:]) == (color[:, :-1] == color[:, 1:])) solver.ensure((group_id[:-1, :] == group_id[1:, :]) == ( color[:-1, :] == color[1:, :])) if is_non_con: graph.numbers_non_consecutive(solver, size) if is_anti_knight: graph.numbers_anti_knight(solver, size) is_sat = solver.solve() return is_sat, size
def solve_nurikabe(height, width, problem, unknown_low=None): solver = Solver() clues = [] for y in range(height): for x in range(width): if problem[y][x] >= 1 or problem[y][x] == -1: clues.append((y, x, problem[y][x])) division = solver.int_array((height, width), 0, len(clues)) roots = [None] + list(map(lambda x: (x[0], x[1]), clues)) graph.division_connected(solver, division, len(clues) + 1, roots=roots) is_white = solver.bool_array((height, width)) solver.ensure(is_white == (division != 0)) solver.add_answer_key(is_white) solver.ensure( (is_white[:-1, :] & is_white[1:, :]).then(division[:-1, :] == division[1:, :])) solver.ensure((is_white[:, :-1] & is_white[:, 1:]).then(division[:, :-1] == division[:, 1:])) solver.ensure(is_white[:-1, :-1] | is_white[:-1, 1:] | is_white[1:, :-1] | is_white[1:, 1:]) for i, (y, x, n) in enumerate(clues): if n > 0: solver.ensure(count_true(division == (i + 1)) == n) elif n == -1 and unknown_low is not None: solver.ensure(count_true(division == (i + 1)) >= unknown_low) is_sat = solver.solve() return is_sat, is_white
def solve_putteria(height, width, blocks): solver = Solver() has_number = solver.bool_array((height, width)) solver.add_answer_key(has_number) solver.ensure((~has_number[:, :-1]) | (~has_number[:, 1:])) solver.ensure((~has_number[:-1, :]) | (~has_number[1:, :])) for block in blocks: solver.ensure(count_true([has_number[y, x] for y, x in block]) == 1) block_size = [[0 for _ in range(width)] for _ in range(height)] for block in blocks: for y, x in block: block_size[y][x] = len(block) for y in range(height): for x1 in range(width): for x2 in range(x1 + 1, width): if block_size[y][x1] == block_size[y][x2]: solver.ensure(~(has_number[y, x1] & has_number[y, x2])) for x in range(width): for y1 in range(height): for y2 in range(y1 + 1, height): if block_size[y1][x] == block_size[y2][x]: solver.ensure(~(has_number[y1, x] & has_number[y2, x])) is_sat = solver.solve() return is_sat, has_number
def solve_gokigen(height, width, problem): solver = Solver() edge_type = solver.bool_array((height, width)) # false: /, true: \ solver.add_answer_key(edge_type) g = graph.Graph((height + 1) * (width + 1)) edge_list = [] for y in range(height): for x in range(width): g.add_edge(y * (width + 1) + x, (y + 1) * (width + 1) + (x + 1)) edge_list.append(edge_type[y, x]) g.add_edge(y * (width + 1) + (x + 1), (y + 1) * (width + 1) + x) edge_list.append(~edge_type[y, x]) graph.active_edges_acyclic(solver, Array(edge_list), g) for y in range(height + 1): for x in range(width + 1): if problem[y][x] >= 0: related = [] if 0 < y and 0 < x: related.append(edge_type[y - 1, x - 1]) if 0 < y and x < width: related.append(~edge_type[y - 1, x]) if y < height and 0 < x: related.append(~edge_type[y, x - 1]) if y < height and x < width: related.append(edge_type[y, x]) solver.ensure(count_true(related) == problem[y][x]) is_sat = solver.solve() return is_sat, edge_type
def solve_fivecells(height, width, problem): vertex_id = [[-1 for _ in range(width)] for _ in range(height)] id_last = 0 for y in range(height): for x in range(width): if problem[y][x] >= -1: vertex_id[y][x] = id_last id_last += 1 g = graph.Graph(id_last) for y in range(height): for x in range(width): if problem[y][x] >= -1: if y < height - 1 and problem[y + 1][x] >= -1: g.add_edge(vertex_id[y][x], vertex_id[y + 1][x]) if x < width - 1 and problem[y][x + 1] >= -1: g.add_edge(vertex_id[y][x], vertex_id[y][x + 1]) solver = Solver() group_id = graph.division_connected_variable_groups(solver, graph=g, group_size=5) is_invalid = False for y in range(height): for x in range(width): if problem[y][x] >= 0: borders = [] if y > 0 and problem[y - 1][x] >= -1: borders.append( group_id[vertex_id[y][x]] != group_id[vertex_id[y - 1][x]]) if y < height - 1 and problem[y + 1][x] >= -1: borders.append( group_id[vertex_id[y][x]] != group_id[vertex_id[y + 1][x]]) if x > 0 and problem[y][x - 1] >= -1: borders.append( group_id[vertex_id[y][x]] != group_id[vertex_id[y][x - 1]]) if x < width - 1 and problem[y][x + 1] >= -1: borders.append( group_id[vertex_id[y][x]] != group_id[vertex_id[y][x + 1]]) always_border = 4 - len(borders) solver.ensure( count_true(borders) == problem[y][x] - always_border) if problem[y][x] - always_border < 0: is_invalid = True is_border = solver.bool_array(len(g)) for i, (u, v) in enumerate(g): solver.ensure(is_border[i] == (group_id[u] != group_id[v])) solver.add_answer_key(is_border) if is_invalid: is_sat = False else: is_sat = solver.solve() return is_sat, is_border
def solve_nurimisaki(height, width, problem): solver = Solver() is_white = solver.bool_array((height, width)) solver.add_answer_key(is_white) graph.active_vertices_connected(solver, is_white) solver.ensure(is_white[:-1, :-1] | is_white[1:, :-1] | is_white[:-1, 1:] | is_white[1:, 1:]) solver.ensure(~(is_white[:-1, :-1] & is_white[1:, :-1] & is_white[:-1, 1:] & is_white[1:, 1:])) for y in range(height): for x in range(width): if problem[y][x] == -1: solver.ensure(is_white[y, x].then( count_true(is_white.four_neighbors(y, x)) != 1)) else: solver.ensure(is_white[y, x]) solver.ensure(count_true(is_white.four_neighbors(y, x)) == 1) if problem[y][x] != 0: n = problem[y][x] cand = [] if y == n - 1: cand.append(fold_and(is_white[(y - n + 1):y, x])) elif y > n - 1: cand.append( fold_and(is_white[(y - n + 1):y, x], ~is_white[y - n, x])) if y == height - n: cand.append(fold_and(is_white[(y + 1):(y + n), x])) elif y < height - n: cand.append( fold_and(is_white[(y + 1):(y + n), x], ~is_white[y + n, x])) if x == n - 1: cand.append(fold_and(is_white[y, (x - n + 1):x])) elif x > n - 1: cand.append( fold_and(is_white[y, (x - n + 1):x], ~is_white[y, x - n])) if x == width - n: cand.append(fold_and(is_white[y, (x + 1):(x + n)])) elif x < width - n: cand.append( fold_and(is_white[y, (x + 1):(x + n)], ~is_white[y, x + n])) solver.ensure(fold_or(cand)) is_sat = solver.solve() return is_sat, is_white
def solve_creek(height, width, problem): solver = Solver() is_white = solver.bool_array((height, width)) solver.add_answer_key(is_white) graph.active_vertices_connected(solver, is_white) for y in range(0, height + 1): for x in range(0, width + 1): if problem[y][x] >= 0: solver.ensure( count_true(~is_white[max(y - 1, 0):min(y + 1, height), max(x - 1, 0):min(x + 1, width)]) == problem[y][x]) is_sat = solver.solve() return is_sat, is_white
def check_problem_constraints(height, width, problem, flg, circ=-1): if flg is None and circ == -1: return True for clue in problem: a = 0 for i in range(2, 6): if clue[i] >= 0: a += 1 solver = Solver() roots = map(lambda x: (x[0], x[1]), problem) division = solver.int_array((height, width), 0, len(problem) - 1) graph.division_connected(solver, division, len(problem), roots=roots) solver.add_answer_key(division) for i, (y, x, u, l, d, r) in enumerate(problem): solver.ensure(division[y, x] == i) if flg is not None and flg[i]: solver.ensure(count_true(division == i) >= 4) if u >= 0: solver.ensure(count_true(division[:y, :] == i) == u) if d >= 0: solver.ensure(count_true(division[(y + 1):, :] == i) == d) if l >= 0: solver.ensure(count_true(division[:, :x] == i) == l) if r >= 0: solver.ensure(count_true(division[:, (x + 1):] == i) == r) # encircling constraint if circ != -1: col = solver.bool_array((height, width)) solver.ensure(col[0, :]) solver.ensure(col[-1, :]) solver.ensure(col[:, 0]) solver.ensure(col[:, -1]) solver.ensure( ((division[1:, :] != circ) & (division[:-1, :] != circ)).then(col[1:, :] == col[:-1, :])) solver.ensure( ((division[:, 1:] != circ) & (division[:, :-1] != circ)).then(col[:, 1:] == col[:, :-1])) solver.ensure( ((division[1:, 1:] != circ) & (division[:-1, :-1] != circ)).then(col[1:, 1:] == col[:-1, :-1])) solver.ensure( ((division[:-1, 1:] != circ) & (division[1:, :-1] != circ)).then(col[:-1, 1:] == col[1:, :-1])) solver.ensure(fold_or(col & (division != circ))) solver.ensure(fold_or((~col) & (division != circ))) sat = solver.find_answer() return sat
def solve_norinori(height, width, blocks): solver = Solver() is_black = solver.bool_array((height, width)) solver.add_answer_key(is_black) for y in range(height): for x in range(width): solver.ensure(is_black[y, x].then( count_true(is_black.four_neighbors(y, x)) == 1)) for block in blocks: solver.ensure(count_true(map(lambda p: is_black[p], block)) == 2) is_sat = solver.solve() return is_sat, is_black
def solve_darts(target, darts, board): solver = Solver() is_dart = solver.bool_array(len(board)) solver.add_answer_key(is_dart) solver.ensure(count_true(is_dart) == darts) def _sum(d, b): sums = 0 for i in range(len(board)): sums += d[i].cond(b[i], 0) return sums solver.ensure(_sum(is_dart, board) == target) is_sat = solver.solve() return is_sat, is_dart
def solve_view(height, width, problem, is_non_con=False, is_anti_knight=False): solver = Solver() has_number = solver.bool_array((height, width)) graph.active_vertices_connected(solver, has_number) nums = solver.int_array((height, width), 0, height + width) solver.add_answer_key(nums) solver.add_answer_key(has_number) to_up = solver.int_array((height, width), 0, height - 1) solver.ensure(to_up[0, :] == 0) solver.ensure(to_up[1:, :] == has_number[:-1, :].cond(0, to_up[:-1, :] + 1)) to_down = solver.int_array((height, width), 0, height - 1) solver.ensure(to_down[-1, :] == 0) solver.ensure(to_down[:-1, :] == has_number[1:, :].cond(0, to_down[1:, :] + 1)) to_left = solver.int_array((height, width), 0, width - 1) solver.ensure(to_left[:, 0] == 0) solver.ensure(to_left[:, 1:] == has_number[:, :-1].cond(0, to_left[:, :-1] + 1)) to_right = solver.int_array((height, width), 0, width - 1) solver.ensure(to_right[:, -1] == 0) solver.ensure(to_right[:, :-1] == has_number[:, 1:].cond(0, to_right[:, 1:] + 1)) solver.ensure(has_number.then(nums == to_up + to_left + to_down + to_right)) solver.ensure((has_number[:-1, :] & has_number[1:, :]).then(nums[:-1, :] != nums[1:, :])) solver.ensure((has_number[:, :-1] & has_number[:, 1:]).then(nums[:, :-1] != nums[:, 1:])) solver.ensure((~has_number).then(nums == 0)) for y in range(height): for x in range(width): if problem[y][x] >= 0: solver.ensure(nums[y, x] == problem[y][x]) solver.ensure(has_number[y, x]) if is_non_con: graph.numbers_non_consecutive(solver, nums, has_number) if is_anti_knight: graph.numbers_anti_knight(solver, nums, has_number) is_sat = solver.solve() return is_sat, nums, has_number
def solve_castle_wall(height, width, arrow, inside): solver = Solver() grid_frame = BoolGridFrame(solver, height - 1, width - 1) solver.add_answer_key(grid_frame) passed = graph.active_edges_single_cycle(solver, grid_frame) # arrow constraints for y in range(height): for x in range(width): if arrow[y][x] == '..': continue solver.ensure(~passed[y, x]) if arrow[y][x][0] == '^': related_edges = grid_frame.vertical[:y, x] elif arrow[y][x][0] == 'v': related_edges = grid_frame.vertical[y:, x] elif arrow[y][x][0] == '<': related_edges = grid_frame.horizontal[y, :x] elif arrow[y][x][0] == '>': related_edges = grid_frame.horizontal[y, x:] else: continue solver.ensure(count_true(related_edges) == int(arrow[y][x][1:])) # inout constraints is_inside = solver.bool_array((height - 1, width - 1)) for y in range(height - 1): for x in range(width - 1): if y == 0: solver.ensure(is_inside[y, x] == grid_frame[0, x * 2 + 1]) else: solver.ensure(is_inside[y, x] == ( is_inside[y - 1, x] != grid_frame[y * 2, x * 2 + 1])) for y in range(height): for x in range(width): if inside[y][x] is True: solver.ensure(is_inside[max(0, y - 1), max(0, x - 1)]) elif inside[y][x] is False: solver.ensure(~is_inside[max(0, y - 1), max(0, x - 1)]) is_sat = solver.solve() return is_sat, grid_frame
def solve_star_battle(n, blocks, k, is_anti_knight=False): if not isinstance(blocks, Array): blocks = Array(blocks) solver = Solver() has_star = solver.bool_array((n, n)) solver.add_answer_key(has_star) for i in range(n): solver.ensure(sum(has_star[i, :].cond(1, 0)) == k) solver.ensure(sum(has_star[:, i].cond(1, 0)) == k) solver.ensure(~(has_star[:-1, :] & has_star[1:, :])) solver.ensure(~(has_star[:, :-1] & has_star[:, 1:])) solver.ensure(~(has_star[:-1, :-1] & has_star[1:, 1:])) solver.ensure(~(has_star[:-1, 1:] & has_star[1:, :-1])) for i in range(n): solver.ensure(sum((has_star & (blocks == i)).cond(1, 0)) == k) if is_anti_knight: graph.active_vertices_anti_knight(solver, has_star) is_sat = solver.solve() return is_sat, has_star
def solve_nanro(height, width, blocks, num): block_id = [[-1 for _ in range(width)] for _ in range(height)] for i, block in enumerate(blocks): for y, x in block: block_id[y][x] = i solver = Solver() answer = [] has_num = solver.bool_array((height, width)) for y in range(height): row = [] for x in range(width): v = solver.int_var(0, len(blocks[block_id[y][x]])) solver.add_answer_key(v) solver.ensure(has_num[y, x] == (v != 0)) row.append(v) answer.append(row) graph.active_vertices_connected(solver, has_num) for i, block in enumerate(blocks): nonempty = solver.int_var(1, len(block)) solver.ensure(nonempty == count_true(answer[y][x] != 0 for y, x in block)) for y, x in block: solver.ensure((answer[y][x] == 0) | (answer[y][x] == nonempty)) for y in range(height): for x in range(width): if num[y][x] > 0: solver.ensure(answer[y][x] == num[y][x]) if y < height - 1 and x < width - 1: solver.ensure((answer[y][x] == 0) | (answer[y][x + 1] == 0) | (answer[y + 1][x] == 0) | (answer[y + 1][x + 1] == 0)) if y < height - 1 and block_id[y][x] != block_id[y + 1][x]: solver.ensure((answer[y][x] == 0) | (answer[y + 1][x] == 0) | (answer[y][x] != answer[y + 1][x])) if x < width - 1 and block_id[y][x] != block_id[y][x + 1]: solver.ensure((answer[y][x] == 0) | (answer[y][x + 1] == 0) | (answer[y][x] != answer[y][x + 1])) is_sat = solver.solve() return is_sat, answer
def solve_yinyang(height, width, problem): solver = Solver() is_black = solver.bool_array((height, width)) solver.add_answer_key(is_black) graph.active_vertices_connected(solver, is_black) graph.active_vertices_connected(solver, ~is_black) solver.ensure(is_black[:-1, :-1] | is_black[:-1, 1:] | is_black[1:, :-1] | is_black[1:, 1:]) solver.ensure(~(is_black[:-1, :-1] & is_black[:-1, 1:] & is_black[1:, :-1] & is_black[1:, 1:])) # auxiliary constraint solver.ensure(~(is_black[:-1, :-1] & is_black[1:, 1:] & ~is_black[1:, :-1] & ~is_black[:-1, 1:])) solver.ensure(~(~is_black[:-1, :-1] & ~is_black[1:, 1:] & is_black[1:, :-1] & is_black[:-1, 1:])) circ = [] for y in range(height): circ.append(is_black[y, 0]) for x in range(1, width): circ.append(is_black[-1, x]) for y in reversed(range(0, height - 1)): circ.append(is_black[y, -1]) for x in reversed(range(1, width - 1)): circ.append(is_black[0, x]) circ_switching = [] for i in range(len(circ)): circ_switching.append(circ[i] != circ[(i + 1) % len(circ)]) solver.ensure(count_true(circ_switching) <= 2) for y in range(height): for x in range(width): if problem[y][x] == 1: solver.ensure(~is_black[y, x]) elif problem[y][x] == 2: solver.ensure(is_black[y, x]) is_sat = solver.solve() return is_sat, is_black
def solve_sukoro(height, width, problem, is_anti_knight=False): solver = Solver() has_number = solver.bool_array((height, width)) graph.active_vertices_connected(solver, has_number) nums = solver.int_array((height, width), -1, 4) solver.add_answer_key(nums) solver.add_answer_key(has_number) for y in range(height): for x in range(width): neighbors = [] if y > 0: neighbors.append(has_number[y-1, x]) solver.ensure((has_number[y, x] & has_number[y-1, x]).then(nums[y, x] != nums[y-1, x])) if y < height - 1: neighbors.append(has_number[y+1, x]) solver.ensure((has_number[y, x] & has_number[y+1, x]).then(nums[y, x] != nums[y+1, x])) if x > 0: neighbors.append(has_number[y, x-1]) solver.ensure((has_number[y, x] & has_number[y, x-1]).then(nums[y, x] != nums[y, x-1])) if x < width - 1: neighbors.append(has_number[y, x+1]) solver.ensure((has_number[y, x] & has_number[y, x+1]).then(nums[y, x] != nums[y, x+1])) solver.ensure(has_number[y, x].then(count_true(neighbors) == nums[y, x])) solver.ensure((~has_number).then(nums < 0)) for y in range(height): for x in range(width): if problem[y][x] >= 0: solver.ensure(nums[y, x] == problem[y][x]) solver.ensure(has_number[y, x]) if is_anti_knight: graph.numbers_anti_knight(solver, nums, has_number) is_sat = solver.solve() return is_sat, nums, has_number
def solve_yajilin(height, width, problem): solver = Solver() grid_frame = BoolGridFrame(solver, height - 1, width - 1) is_passed = graph.active_edges_single_cycle(solver, grid_frame) black_cell = solver.bool_array((height, width)) graph.active_vertices_not_adjacent(solver, black_cell) solver.add_answer_key(grid_frame) solver.add_answer_key(black_cell) for y in range(height): for x in range(width): if problem[y][x] != '..': # clue solver.ensure(~is_passed[y, x]) solver.ensure(~black_cell[y, x]) if problem[y][x][0] == '^': solver.ensure( count_true(black_cell[0:y, x]) == int(problem[y][x][1:])) elif problem[y][x][0] == 'v': solver.ensure( count_true(black_cell[(y + 1):height, x]) == int(problem[y][x][1:])) elif problem[y][x][0] == '<': solver.ensure( count_true(black_cell[y, 0:x]) == int(problem[y][x][1:])) elif problem[y][x][0] == '>': solver.ensure( count_true(black_cell[y, ( x + 1):width]) == int(problem[y][x][1:])) else: solver.ensure(is_passed[y, x] != black_cell[y, x]) is_sat = solver.solve() return is_sat, grid_frame, black_cell
def solve_slalom(height, width, origin, is_black, gates, reference_sol_loop=None): solver = Solver() loop = BoolGridFrame(solver, height - 1, width - 1) loop_dir = BoolGridFrame(solver, height - 1, width - 1) solver.add_answer_key(loop.all_edges()) graph.active_edges_single_cycle(solver, loop) gate_ord = solver.int_array((height, width), 0, len(gates)) passed = solver.bool_array((height, width)) gate_id = [[None for _ in range(width)] for _ in range(height)] for y, x, d, l, n in gates: if d == 0: # horizontal gate_cells = [(y, x + i) for i in range(l)] elif d == 1: # vertical gate_cells = [(y + i, x) for i in range(l)] for y2, x2 in gate_cells: gate_id[y2][x2] = n solver.ensure( count_true([passed[y2, x2] for y2, x2 in gate_cells]) == 1) solver.ensure(passed[origin]) for y in range(height): for x in range(width): neighbors = [] if y > 0: neighbors.append((y - 1, x)) if y < height - 1: neighbors.append((y + 1, x)) if x > 0: neighbors.append((y, x - 1)) if x < width - 1: neighbors.append((y, x + 1)) # in-degree, out-degree solver.ensure( count_true([ loop[y + y2, x + x2] & (loop_dir[y + y2, x + x2] != ((y2, x2) < (y, x))) for y2, x2 in neighbors ]) == passed[y, x].cond(1, 0)) solver.ensure( count_true([ loop[y + y2, x + x2] & (loop_dir[y + y2, x + x2] == ((y2, x2) < (y, x))) for y2, x2 in neighbors ]) == passed[y, x].cond(1, 0)) if is_black[y][x]: solver.ensure(~passed[y, x]) continue if (y, x) == origin: continue if gate_id[y][x] is None: for y2, x2 in neighbors: solver.ensure((loop[y + y2, x + x2] & (loop_dir[y + y2, x + x2] != ((y2, x2) < (y, x)))).then( (gate_ord[y2, x2] == gate_ord[y, x]))) else: for y2, x2 in neighbors: solver.ensure((loop[y + y2, x + x2] & (loop_dir[y + y2, x + x2] != ((y2, x2) < (y, x)))).then( (gate_ord[y2, x2] == gate_ord[y, x] - 1))) if gate_id[y][x] >= 1: solver.ensure(passed[y, x].then(gate_ord[y, x] == gate_id[y][x])) # auxiliary constraint for y0 in range(height): for x0 in range(width): for y1 in range(height): for x1 in range(width): if (y0, x0) < (y1, x1) and gate_id[y0][ x0] is not None and gate_id[y1][x1] is not None: solver.ensure((passed[y0, x0] & passed[y1, x1]).then( gate_ord[y0, x0] != gate_ord[y1, x1])) if reference_sol_loop is not None: avoid_reference_sol = [] for y in range(height): for x in range(width): if y < height - 1: avoid_reference_sol.append( loop.vertical[y, x] != reference_sol_loop.vertical[y, x].sol) if x < width - 1: avoid_reference_sol.append(loop.horizontal[ y, x] != reference_sol_loop.horizontal[y, x].sol) solver.ensure(fold_or(avoid_reference_sol)) is_sat = solver.find_answer() return is_sat, loop else: is_sat = solver.solve() return is_sat, loop
def generate_slalom_initial_placement(height, width, n_min_gates=None, n_max_gates=None, n_max_isolated_black_cells=None, no_adjacent_black_cell=False, no_facing_length_two=False, no_space_2x2=False, black_cell_in_every_3x3=False, min_go_through=0): solver = Solver() loop = BoolGridFrame(solver, height - 1, width - 1) is_black = solver.bool_array((height, width)) is_horizontal = solver.bool_array((height, width)) is_vertical = solver.bool_array((height, width)) solver.ensure(~(is_black & is_horizontal)) solver.ensure(~(is_black & is_vertical)) solver.ensure(~(is_horizontal & is_vertical)) solver.ensure(~(is_horizontal[0, :])) solver.ensure(~(is_horizontal[-1, :])) solver.ensure(~(is_vertical[:, 0])) solver.ensure(~(is_vertical[:, -1])) is_passed = graph.active_edges_single_cycle(solver, loop) # --------- board must be valid as a problem --------- # loop constraints for y in range(height): for x in range(width): if y > 0: solver.ensure(is_black[y, x].then(~loop.vertical[y - 1, x])) solver.ensure(is_vertical[y, x].then(~loop.vertical[y - 1, x])) if y < height - 1: solver.ensure(is_black[y, x].then(~loop.vertical[y, x])) solver.ensure(is_vertical[y, x].then(~loop.vertical[y, x])) if x > 0: solver.ensure(is_black[y, x].then(~loop.horizontal[y, x - 1])) solver.ensure( is_horizontal[y, x].then(~loop.horizontal[y, x - 1])) if x < width - 1: solver.ensure(is_black[y, x].then(~loop.horizontal[y, x])) solver.ensure(is_horizontal[y, x].then(~loop.horizontal[y, x])) # gates must be closed solver.ensure(is_vertical[1:, :].then(is_vertical[:-1, :] | is_black[:-1, :])) solver.ensure(is_vertical[:-1, :].then(is_vertical[1:, :] | is_black[1:, :])) solver.ensure(is_horizontal[:, 1:].then(is_horizontal[:, :-1] | is_black[:, :-1])) solver.ensure(is_horizontal[:, :-1].then(is_horizontal[:, 1:] | is_black[:, 1:])) # each horizontal gate must be passed exactly once for y in range(1, height - 1): for x in range(width): on_loop = [] for x2 in range(width): cond = [is_passed[y, x2]] if x2 < x: cond += [is_horizontal[y, i] for i in range(x2, x)] elif x < x2: cond += [is_horizontal[y, i] for i in range(x + 1, x2 + 1)] on_loop.append(fold_and(cond)) solver.ensure(is_horizontal[y, x].then(count_true(on_loop) == 1)) # each vertical gate must be passed exactly once for y in range(height): for x in range(1, width - 1): on_loop = [] for y2 in range(width): cond = [is_passed[y2, x]] if y2 < y: cond += [is_vertical[i, x] for i in range(y2, y)] elif y < y2: cond += [is_vertical[i, x] for i in range(y + 1, y2 + 1)] on_loop.append(fold_and(cond)) solver.ensure(is_vertical[y, x].then(count_true(on_loop) == 1)) # --------- loop must be canonical --------- # for simplicity, no stacked gates (although this is not necessary for the canonicity) solver.ensure(~(is_horizontal[:-1, :] & is_horizontal[1:, :])) solver.ensure(~(is_vertical[:, :-1] & is_vertical[:, 1:])) for y in range(height): for x in range(width): if 0 < y < height - 1: if x == 0 or x == width - 1: solver.ensure(is_horizontal[y, x].then(~is_black[y - 1, x] & ~is_black[y + 1, x])) else: solver.ensure((is_horizontal[y, x] & (is_black[y - 1, x] | is_black[y + 1, x]) ).then(is_horizontal[y, x - 1] & is_horizontal[y, x + 1] & ~is_black[y - 1, x - 1] & ~is_black[y + 1, x - 1] & ~is_black[y + 1, x - 1] & ~is_black[y + 1, x + 1])) if 0 < x < width - 1: if y == 0 or y == height - 1: solver.ensure(is_vertical[y, x].then(~is_black[y, x - 1] & ~is_black[y, x + 1])) else: solver.ensure( (is_vertical[y, x] & (is_black[y, x - 1] | is_black[y, x + 1]) ).then(is_vertical[y - 1, x] & is_vertical[y + 1, x] & ~is_black[y - 1, x - 1] & ~is_black[y + 1, x - 1] & ~is_black[y + 1, x - 1] & ~is_black[y + 1, x + 1])) # no detour for y in range(height - 1): for x in range(width - 1): solver.ensure(count_true(loop.cell_neighbors(y, x)) <= 2) solver.ensure( fold_and(~is_black[y:y + 2, x:x + 2], ~is_horizontal[y:y + 2, x:x + 2], ~is_vertical[y:y + 2, x:x + 2]).then( count_true(loop.cell_neighbors(y, x)) + 1 < count_true(is_passed[y:y + 2, x:x + 2]))) # no ambiguous L-shaped turning for y in range(height - 1): for x in range(width - 1): for dy in [0, 1]: for dx in [0, 1]: solver.ensure(~fold_and([ loop.horizontal[y + dy, x], loop.vertical[ y, x + dx], ~is_vertical[y + dy, x + 1 - dx], ~is_horizontal[y + 1 - dx, x + dx], ~is_black[y + 1 - dy, x + 1 - dx], count_true(is_passed[y:y + 2, x:x + 2]) == 3 ])) # no ambiguous L-shaped turning involving gates for y in range(height - 1): for x in range(width - 2): solver.ensure( fold_and( is_vertical[y:y + 2, x + 1], ~is_black[y:y + 2, x:x + 3]).then( count_true(loop.horizontal[y, x], loop.horizontal[ y + 1, x], loop.vertical[y, x], loop.vertical[y, x + 2]) + 1 < count_true(is_passed[y:y + 2, x], is_passed[y:y + 2, x + 2]))) for y in range(height - 2): for x in range(width - 1): solver.ensure( fold_and(is_horizontal[y + 1, x:x + 2], ~is_black[y:y + 3, x:x + 2]). then( count_true(loop.vertical[y, x], loop.vertical[y, x + 1], loop.horizontal[y, x], loop.horizontal[y + 2, x]) + 1 < count_true(is_passed[y, x:x + 2], is_passed[y + 2, x:x + 2]))) # no dead ends for y in range(height): for x in range(width): solver.ensure((~is_black[y, x]).then( count_true(~is_black.four_neighbors(y, x)) >= 2)) # --------- avoid "trivial" problems --------- solver.ensure(count_true(is_vertical) > 5) solver.ensure(count_true(is_horizontal) > 4) if n_max_isolated_black_cells is not None: lonely_black_cell = [] for y in range(height): for x in range(width): cond = [is_black[y, x]] if y > 0: cond.append(~is_vertical[y - 1, x]) if y < height - 1: cond.append(~is_vertical[y + 1, x]) if x > 0: cond.append(~is_horizontal[y, x - 1]) if x < width - 1: cond.append(~is_horizontal[y, x + 1]) lonely_black_cell.append(fold_and(cond)) solver.ensure( count_true(lonely_black_cell) <= n_max_isolated_black_cells) short_gates = [] for y in range(height): for x in range(width): g1 = fold_and([ is_vertical[y, x], ~is_vertical[y - 1, x] if y > 0 else True, ~is_vertical[y + 1, x] if y < height - 1 else True ]) g2 = fold_and([ is_horizontal[y, x], ~is_horizontal[y, x - 1] if x > 0 else True, ~is_horizontal[y, x + 1] if x < width - 1 else True ]) if 0 < y < height - 1 and 0 < x < width - 1: short_gates.append(g1) short_gates.append(g2) solver.ensure((g1 | g2).then(~is_black[y - 1, x - 1] & ~is_black[y - 1, x + 1] & ~is_black[y + 1, x - 1] & ~is_black[y + 1, x + 1])) else: solver.ensure(~g1) solver.ensure(~g2) solver.ensure(count_true(short_gates) <= 0) for y in range(1, height - 1): for x in range(1, width - 1): solver.ensure( count_true( is_horizontal[y - 1, x] & is_black[y - 1, x - 1] & is_black[y - 1, x + 1], is_horizontal[y + 1, x] & is_black[y + 1, x - 1] & is_black[y + 1, x + 1], is_vertical[y, x - 1] & is_black[y - 1, x - 1] & is_black[y + 1, x - 1], is_vertical[y, x + 1] & is_black[y - 1, x + 1] & is_black[y + 1, x + 1], ) <= 1) # --------- ensure randomness --------- passed_constraints = [[0 for _ in range(width)] for _ in range(height)] for y in range(height): for x in range(width): if (y > 0 and passed_constraints[y - 1][x] != 0) or ( x > 0 and passed_constraints[y][x - 1] != 0): continue passed_constraints[y][x] = max(0, random.randint(-20, 2)) for y in range(height): for x in range(width): if passed_constraints[y][x] == 1: solver.ensure(is_passed[y, x]) elif passed_constraints[y][x] == 2: solver.ensure(~is_passed[y, x]) # --------- extra constraints --------- if n_min_gates is not None or n_max_gates is not None: gate_representative = [] for y in range(height): for x in range(width): gate_representative.append(is_horizontal[y, x] & ( ~is_horizontal[y, x - 1] if x > 0 else True)) gate_representative.append(is_vertical[y, x] & ( ~is_vertical[y - 1, x] if y > 0 else True)) if n_min_gates is not None: solver.ensure(n_min_gates <= count_true(gate_representative)) if n_max_gates is not None: solver.ensure(count_true(gate_representative) <= n_max_gates) if min_go_through > 0: go_through = [] for y in range(height): for x in range(width): if y < height - 4 and 0 < x < width - 1: go_through.append( fold_and( is_horizontal[y + 1, x], is_horizontal[y + 1, x - 1] | is_horizontal[y + 1, x + 1], ~is_black[y + 2, x - 1], ~is_black[y + 2, x + 1], is_horizontal[y + 3, x], is_horizontal[y + 3, x - 1] | is_horizontal[y + 3, x + 1], loop.vertical[y:y + 4, x])) if x < width - 4 and 0 < y < height - 1: go_through.append( fold_and( is_vertical[y, x + 1], is_vertical[y - 1, x + 1] | is_vertical[y + 1, x + 1], ~is_black[y - 1, x + 2], ~is_black[y + 1, x + 2], is_vertical[y, x + 3], is_vertical[y - 1, x + 3] | is_vertical[y + 1, x + 3], loop.horizontal[y, x:x + 4])) solver.ensure(count_true(go_through) >= 2) if no_adjacent_black_cell: solver.ensure(~(is_black[:-1, :] & is_black[1:, :])) solver.ensure(~(is_black[:, :-1] & is_black[:, 1:])) solver.ensure(~(is_black[:-1, :-1] & is_black[1:, 1:])) solver.ensure(~(is_black[:-1, 1:] & is_black[1:, :-1])) if no_facing_length_two: for y in range(height): for x in range(width): if y <= height - 3 and x <= width - 4: solver.ensure(~fold_and( is_black[y, x], is_black[y + 2, x], is_black[y, x + 3], is_black[y + 2, x + 3], is_horizontal[ y, x + 1], is_horizontal[y, x + 2], is_horizontal[ y + 2, x + 1], is_horizontal[y + 2, x + 2])) if y <= height - 4 and x <= width - 3: solver.ensure( ~fold_and(is_black[y, x], is_black[y, x + 2], is_black[ y + 3, x], is_black[y + 3, x + 2], is_vertical[ y + 1, x], is_vertical[y + 2, x], is_vertical[ y + 1, x + 2], is_vertical[y + 2, x + 2])) if no_space_2x2: has_some = is_black | is_vertical | is_horizontal solver.ensure(has_some[:-1, :-1] | has_some[1:, :-1] | has_some[:-1, 1:] | has_some[1:, 1:]) if black_cell_in_every_3x3: for y in range(-1, height - 2): for x in range(-1, width - 2): solver.ensure( fold_or(is_black[max(0, y):min(height, y + 3), max(0, x):min(width, x + 3)])) is_sat = solver.find_answer() if not is_sat: return None return loop, is_passed, is_black, is_horizontal, is_vertical
def solve_lits(height, width, blocks): solver = Solver() is_black = solver.bool_array((height, width)) solver.add_answer_key(is_black) # black cells are connected graph.active_vertices_connected(solver, is_black) # no 2x2 black cells solver.ensure(~(is_black[1:, 1:] & is_black[1:, :-1] & is_black[:-1, 1:] & is_black[:-1, :-1])) block_id = [[-1 for _ in range(width)] for _ in range(height)] for i, block in enumerate(blocks): for y, x in block: block_id[y][x] = i num_straight = solver.int_array(len(blocks), 0, 2) has_t = solver.bool_array(len(blocks)) for i in range(len(blocks)): solver.ensure(count_true([is_black[p] for p in blocks[i]]) == 4) adjacent_pairs = [] is_straight = [] is_t = [] for y, x in blocks[i]: neighbor_same_block = [] for y2, x2 in is_black.four_neighbor_indices(y, x): if block_id[y2][x2] == i: neighbor_same_block.append((y2, x2)) if (y, x) < (y2, x2): adjacent_pairs.append(is_black[y, x] & is_black[y2, x2]) solver.ensure(is_black[y, x].then(fold_or([is_black[p] for p in neighbor_same_block]))) tmp = [] if 0 < y < height - 1 and block_id[y - 1][x] == i and block_id[y + 1][x] == i: tmp.append(fold_and(is_black[y-1:y+2, x])) if 0 < x < width - 1 and block_id[y][x - 1] == i and block_id[y][x + 1] == i: tmp.append(fold_and(is_black[y, x-1:x+2])) if len(tmp) >= 1: is_straight.append(fold_or(tmp)) if len(neighbor_same_block) >= 3: is_t.append(count_true([is_black[p] for p in neighbor_same_block]) >= 3) solver.ensure(count_true(adjacent_pairs) == 3) solver.ensure(num_straight[i] == count_true(is_straight)) solver.ensure(has_t[i] == fold_or(is_t)) for y in range(height): for x in range(width): if y < height - 1 and block_id[y][x] != block_id[y + 1][x]: i = block_id[y][x] j = block_id[y + 1][x] solver.ensure((is_black[y, x] & is_black[y + 1, x]).then( (num_straight[i] != num_straight[j]) | (has_t[i] != has_t[j]) )) if x < width - 1 and block_id[y][x] != block_id[y][x + 1]: i = block_id[y][x] j = block_id[y][x + 1] solver.ensure((is_black[y, x] & is_black[y, x + 1]).then( (num_straight[i] != num_straight[j]) | (has_t[i] != has_t[j]) )) is_sat = solver.solve() return is_sat, is_black
def solve_akari(height, width, problem, is_anti_knight=True): solver = Solver() has_light = solver.bool_array((height, width)) solver.add_answer_key(has_light) for y in range(height): for x in range(width): if problem[y][x] >= -1: continue if y == 0 or problem[y - 1][x] >= -1: group = [] for y2 in range(y, height): if problem[y2][x] < -1: group.append((y2, x)) else: break solver.ensure(count_true([has_light[p] for p in group]) <= 1) if x == 0 or problem[y][x - 1] >= -1: group = [] for x2 in range(x, width): if problem[y][x2] < -1: group.append((y, x2)) else: break solver.ensure(count_true([has_light[p] for p in group]) <= 1) for y in range(height): for x in range(width): if problem[y][x] < -1: sight = [(y, x)] for y2 in range(y - 1, -1, -1): if problem[y2][x] < -1: sight.append((y2, x)) else: break for y2 in range(y + 1, height, 1): if problem[y2][x] < -1: sight.append((y2, x)) else: break for x2 in range(x - 1, -1, -1): if problem[y][x2] < -1: sight.append((y, x2)) else: break for x2 in range(x + 1, width, 1): if problem[y][x2] < -1: sight.append((y, x2)) else: break solver.ensure(fold_or([has_light[p] for p in sight])) else: solver.ensure(~has_light[y, x]) if problem[y][x] >= 0: neighbors = [] if y > 0 and problem[y - 1][x] < -1: neighbors.append((y - 1, x)) if y < height - 1 and problem[y + 1][x] < -1: neighbors.append((y + 1, x)) if x > 0 and problem[y][x - 1] < -1: neighbors.append((y, x - 1)) if x < width - 1 and problem[y][x + 1] < -1: neighbors.append((y, x + 1)) solver.ensure(count_true([has_light[p] for p in neighbors]) == problem[y][x]) if is_anti_knight: graph.active_vertices_anti_knight(solver, has_light) is_sat = solver.solve() return is_sat, has_light