def test_image_prediction(self): pixel_x = np.array([0]) * u.deg pixel_y = np.array([0]) * u.deg image = np.array([1]) pixel_area = np.array([1]) * u.deg * u.deg self.impact_reco.set_event_properties( {1: image}, {1: pixel_x}, {1: pixel_y}, {1: pixel_area}, {1: "CHEC"}, {1: 0 * u.m}, {1: 0 * u.m}, array_direction=[0 * u.deg, 0 * u.deg], ) """First check image prediction by directly accessing the function""" pred = self.impact_reco.image_prediction( "CHEC", zenith=0, azimuth=0, energy=1, impact=50, x_max=0, pix_x=pixel_x, pix_y=pixel_y, ) assert np.sum(pred) != 0 """Then check helper function gives the same answer""" shower = ReconstructedShowerContainer() shower.is_valid = True shower.alt = 0 * u.deg shower.az = 0 * u.deg shower.core_x = 0 * u.m shower.core_y = 100 * u.m shower.h_max = 300 + 93 * np.log10(1) energy = ReconstructedEnergyContainer() energy.is_valid = True energy.energy = 1 * u.TeV pred2 = self.impact_reco.get_prediction( 1, shower_reco=shower, energy_reco=energy ) print(pred, pred2) assert pred.all() == pred2.all()
def predict(self, hillas_dict, inst, array_pointing, telescopes_pointings=None): """ The function you want to call for the reconstruction of the event. It takes care of setting up the event and consecutively calls the functions for the direction and core position reconstruction. Shower parameters not reconstructed by this class are set to np.nan Parameters ----------- hillas_dict: dict dictionary with telescope IDs as key and HillasParametersContainer instances as values inst : ctapipe.io.InstrumentContainer instrumental description array_pointing: SkyCoord[AltAz] pointing direction of the array telescopes_pointings: dict[SkyCoord[AltAz]] dictionary of pointing direction per each telescope Raises ------ TooFewTelescopesException if len(hillas_dict) < 2 InvalidWidthException if any width is np.nan or 0 """ # filter warnings for missing obs time. this is needed because MC data has no obs time warnings.filterwarnings(action='ignore', category=MissingFrameAttributeWarning) # stereoscopy needs at least two telescopes if len(hillas_dict) < 2: raise TooFewTelescopesException( "need at least two telescopes, have {}".format( len(hillas_dict))) # check for np.nan or 0 width's as these screw up weights if any( [np.isnan(hillas_dict[tel]['width'].value) for tel in hillas_dict]): raise InvalidWidthException( "A HillasContainer contains an ellipse of width==np.nan") if any([hillas_dict[tel]['width'].value == 0 for tel in hillas_dict]): raise InvalidWidthException( "A HillasContainer contains an ellipse of width==0") # use the single telescope pointing also for parallel pointing: code is more general if telescopes_pointings is None: telescopes_pointings = { tel_id: array_pointing for tel_id in hillas_dict.keys() } else: self.divergent_mode = True self.corrected_angle_dict = {} self.initialize_hillas_planes(hillas_dict, inst.subarray, telescopes_pointings, array_pointing) # algebraic direction estimate direction, err_est_dir = self.estimate_direction() # array pointing is needed to define the tilted frame core_pos = self.estimate_core_position(hillas_dict, array_pointing) # container class for reconstructed showers result = ReconstructedShowerContainer() _, lat, lon = cartesian_to_spherical(*direction) # estimate max height of shower h_max = self.estimate_h_max() # astropy's coordinates system rotates counter-clockwise. # Apparently we assume it to be clockwise. result.alt, result.az = lat, -lon result.core_x = core_pos[0] result.core_y = core_pos[1] result.core_uncert = np.nan result.tel_ids = [h for h in hillas_dict.keys()] result.average_intensity = np.mean( [h.intensity for h in hillas_dict.values()]) result.is_valid = True result.alt_uncert = err_est_dir result.az_uncert = np.nan result.h_max = h_max result.h_max_uncert = np.nan result.goodness_of_fit = np.nan return result
def predict(self, shower_seed, energy_seed): """Predict method for the ImPACT reconstructor. Used to calculate the reconstructed ImPACT shower geometry and energy. Parameters ---------- shower_seed: ReconstructedShowerContainer Seed shower geometry to be used in the fit energy_seed: ReconstructedEnergyContainer Seed energy to be used in fit Returns ------- ReconstructedShowerContainer, ReconstructedEnergyContainer: """ self.reset_interpolator() horizon_seed = SkyCoord(az=shower_seed.az, alt=shower_seed.alt, frame=AltAz()) nominal_seed = horizon_seed.transform_to(self.nominal_frame) source_x = nominal_seed.fov_lon.to_value(u.rad) source_y = nominal_seed.fov_lat.to_value(u.rad) ground = GroundFrame(x=shower_seed.core_x, y=shower_seed.core_y, z=0 * u.m) tilted = ground.transform_to( TiltedGroundFrame(pointing_direction=self.array_direction) ) tilt_x = tilted.x.to(u.m).value tilt_y = tilted.y.to(u.m).value zenith = 90 * u.deg - self.array_direction.alt seeds = spread_line_seed( self.hillas_parameters, self.tel_pos_x, self.tel_pos_y, source_x, source_y, tilt_x, tilt_y, energy_seed.energy.value, shift_frac=[1], )[0] # Perform maximum likelihood fit fit_params, errors, like = self.minimise( params=seeds[0], step=seeds[1], limits=seeds[2], minimiser_name=self.minimiser_name, ) # Create a container class for reconstructed shower shower_result = ReconstructedShowerContainer() # Convert the best fits direction and core to Horizon and ground systems and # copy to the shower container nominal = SkyCoord( fov_lon=fit_params[0] * u.rad, fov_lat=fit_params[1] * u.rad, frame=self.nominal_frame, ) horizon = nominal.transform_to(AltAz()) shower_result.alt, shower_result.az = horizon.alt, horizon.az tilted = TiltedGroundFrame( x=fit_params[2] * u.m, y=fit_params[3] * u.m, pointing_direction=self.array_direction, ) ground = project_to_ground(tilted) shower_result.core_x = ground.x shower_result.core_y = ground.y shower_result.is_valid = True # Currently no errors not available to copy NaN shower_result.alt_uncert = np.nan shower_result.az_uncert = np.nan shower_result.core_uncert = np.nan # Copy reconstructed Xmax shower_result.h_max = fit_params[5] * self.get_shower_max( fit_params[0], fit_params[1], fit_params[2], fit_params[3], zenith.to(u.rad).value, ) shower_result.h_max *= np.cos(zenith) shower_result.h_max_uncert = errors[5] * shower_result.h_max shower_result.goodness_of_fit = like # Create a container class for reconstructed energy energy_result = ReconstructedEnergyContainer() # Fill with results energy_result.energy = fit_params[4] * u.TeV energy_result.energy_uncert = errors[4] * u.TeV energy_result.is_valid = True return shower_result, energy_result
def predict(self, hillas_dict, inst, array_pointing, telescopes_pointings=None): """ Parameters ---------- hillas_dict: dict Dictionary containing Hillas parameters for all telescopes in reconstruction inst : ctapipe.io.InstrumentContainer instrumental description array_pointing: SkyCoord[AltAz] pointing direction of the array telescopes_pointings: dict[SkyCoord[AltAz]] dictionary of pointing direction per each telescope Returns ------- ReconstructedShowerContainer: """ # filter warnings for missing obs time. this is needed because MC data has no obs time warnings.filterwarnings(action='ignore', category=MissingFrameAttributeWarning) # stereoscopy needs at least two telescopes if len(hillas_dict) < 2: raise TooFewTelescopesException( "need at least two telescopes, have {}" .format(len(hillas_dict))) # check for np.nan or 0 width's as these screw up weights if any([np.isnan(hillas_dict[tel]['width'].value) for tel in hillas_dict]): raise InvalidWidthException( "A HillasContainer contains an ellipse of width==np.nan") if any([hillas_dict[tel]['width'].value == 0 for tel in hillas_dict]): raise InvalidWidthException( "A HillasContainer contains an ellipse of width==0") if telescopes_pointings is None: telescopes_pointings = {tel_id: array_pointing for tel_id in hillas_dict.keys()} tilted_frame = TiltedGroundFrame(pointing_direction=array_pointing) ground_positions = inst.subarray.tel_coords grd_coord = GroundFrame(x=ground_positions.x, y=ground_positions.y, z=ground_positions.z) tilt_coord = grd_coord.transform_to(tilted_frame) tel_x = {tel_id: tilt_coord.x[tel_id-1] for tel_id in list(hillas_dict.keys())} tel_y = {tel_id: tilt_coord.y[tel_id-1] for tel_id in list(hillas_dict.keys())} nom_frame = NominalFrame(origin=array_pointing) hillas_dict_mod = copy.deepcopy(hillas_dict) for tel_id, hillas in hillas_dict_mod.items(): # prevent from using rads instead of meters as inputs assert hillas.x.to(u.m).unit == u.Unit('m') focal_length = inst.subarray.tel[tel_id].optics.equivalent_focal_length camera_frame = CameraFrame( telescope_pointing=telescopes_pointings[tel_id], focal_length=focal_length, ) cog_coords = SkyCoord(x=hillas.x, y=hillas.y, frame=camera_frame) cog_coords_nom = cog_coords.transform_to(nom_frame) hillas.x = cog_coords_nom.delta_alt hillas.y = cog_coords_nom.delta_az src_x, src_y, err_x, err_y = self.reconstruct_nominal(hillas_dict_mod) core_x, core_y, core_err_x, core_err_y = self.reconstruct_tilted( hillas_dict_mod, tel_x, tel_y) err_x *= u.rad err_y *= u.rad nom = SkyCoord( delta_az=src_x * u.rad, delta_alt=src_y * u.rad, frame=nom_frame ) # nom = sky_pos.transform_to(nom_frame) sky_pos = nom.transform_to(array_pointing.frame) result = ReconstructedShowerContainer() result.alt = sky_pos.altaz.alt.to(u.rad) result.az = sky_pos.altaz.az.to(u.rad) tilt = SkyCoord( x=core_x * u.m, y=core_y * u.m, frame=tilted_frame, ) grd = project_to_ground(tilt) result.core_x = grd.x result.core_y = grd.y x_max = self.reconstruct_xmax( nom.delta_az, nom.delta_alt, tilt.x, tilt.y, hillas_dict_mod, tel_x, tel_y, 90 * u.deg - array_pointing.alt, ) result.core_uncert = np.sqrt(core_err_x**2 + core_err_y**2) * u.m result.tel_ids = [h for h in hillas_dict_mod.keys()] result.average_intensity = np.mean([h.intensity for h in hillas_dict_mod.values()]) result.is_valid = True src_error = np.sqrt(err_x**2 + err_y**2) result.alt_uncert = src_error.to(u.rad) result.az_uncert = src_error.to(u.rad) result.h_max = x_max result.h_max_uncert = np.nan result.goodness_of_fit = np.nan return result