示例#1
0
def test_metadata(tmpdir: Path):
    output_path = Path(tmpdir / "metadata.dl1.h5")

    dataset = "lst_prod3_calibration_and_mcphotons.simtel.zst"

    config = Config(
        {
            "DataWriter": {
                "Contact": {
                    "name": "Maximilian Nöthe",
                    "email": "*****@*****.**",
                    "organization": "TU Dortmund",
                }
            }
        }
    )

    with EventSource(get_dataset_path(dataset)) as source:
        with DataWriter(
            event_source=source,
            output_path=output_path,
            write_parameters=True,
            write_images=True,
            config=config,
        ):
            pass

        assert output_path.exists()

        with tables.open_file(output_path) as h5file:
            meta = h5file.root._v_attrs
            assert meta["CTA CONTACT NAME"] == "Maximilian Nöthe"
            assert meta["CTA CONTACT EMAIL"] == "*****@*****.**"
            assert meta["CTA CONTACT ORGANIZATION"] == "TU Dortmund"
示例#2
0
def test_dl1(tmpdir: Path):
    """
    Check that we can write DL1 files

    Parameters
    ----------
    tmpdir :
        temp directory fixture
    """

    output_path = Path(tmpdir / "events.dl1.h5")
    source = EventSource(
        get_dataset_path(
            "gamma_LaPalma_baseline_20Zd_180Az_prod3b_test.simtel.gz"),
        max_events=20,
        allowed_tels=[1, 2, 3, 4],
    )
    calibrate = CameraCalibrator(subarray=source.subarray)

    with DataWriter(
            event_source=source,
            output_path=output_path,
            write_parameters=False,
            write_images=True,
    ) as write_dl1:
        write_dl1.log.level = logging.DEBUG
        for event in source:
            calibrate(event)
            write_dl1(event)
        write_dl1.write_simulation_histograms(source)

    assert output_path.exists()

    # check we can get the subarray description:
    sub = SubarrayDescription.from_hdf(output_path)
    assert sub.num_tels > 0

    # check a few things in the output just to make sure there is output. For a
    # full test of the data model, a verify tool should be created.
    with tables.open_file(output_path) as h5file:
        images = h5file.get_node("/dl1/event/telescope/images/tel_001")
        assert images.col("image").max() > 0.0
        assert (h5file.root._v_attrs["CTA PRODUCT DATA MODEL VERSION"]  # pylint: disable=protected-access
                == DATA_MODEL_VERSION)
        shower = h5file.get_node("/simulation/event/subarray/shower")
        assert len(shower) > 0
        assert shower.col("true_alt").mean() > 0.0
        assert (shower._v_attrs["true_alt_UNIT"] == "deg")  # pylint: disable=protected-access
示例#3
0
def test_metadata(tmpdir: Path):
    output_path = Path(tmpdir / "metadata.dl1.h5")

    dataset = "gamma_20deg_0deg_run2___cta-prod5-paranal_desert-2147m-Paranal-dark_cone10-100evts.simtel.zst"

    config = Config({
        "DataWriter": {
            "Contact": {
                "name": "Maximilian Nöthe",
                "email": "*****@*****.**",
                "organization": "TU Dortmund",
            },
            "Instrument": {
                "site": "CTA-North",
                "id_": "alpha"
            },
            "context_metadata": {
                "EXAMPLE": "test_value"
            },
        }
    })

    with EventSource(get_dataset_path(dataset)) as source:
        with DataWriter(
                event_source=source,
                output_path=output_path,
                write_parameters=True,
                write_images=True,
                config=config,
        ):
            pass

        assert output_path.exists()

        with tables.open_file(output_path) as h5file:
            meta = h5file.root._v_attrs
            assert meta["CTA CONTACT NAME"] == "Maximilian Nöthe"
            assert meta[
                "CTA CONTACT EMAIL"] == "*****@*****.**"
            assert meta["CTA CONTACT ORGANIZATION"] == "TU Dortmund"
            assert meta["CTA INSTRUMENT SITE"] == "CTA-North"
            assert meta["CTA INSTRUMENT ID"] == "alpha"
            assert meta["CONTEXT EXAMPLE"] == "test_value"
示例#4
0
def test_dl1writer_no_events(tmpdir: Path):
    """
    Check that we can write DL1 files even when no events are given

    Parameters
    ----------
    tmpdir :
        temp directory fixture
    """

    output_path = Path(tmpdir / "no_events.dl1.h5")
    dataset = "lst_prod3_calibration_and_mcphotons.simtel.zst"
    with EventSource(get_dataset_path(dataset),
                     focal_length_choice='nominal') as source:
        # exhaust source
        for _ in source:
            pass

    assert source.file_.histograms is not None

    with DataWriter(
            event_source=source,
            output_path=output_path,
            write_parameters=True,
            write_images=True,
    ) as writer:
        writer.log.level = logging.DEBUG
        writer.write_simulation_histograms(source)

    assert output_path.exists()

    # check we can get the subarray description:
    sub = SubarrayDescription.from_hdf(output_path)
    assert sub == source.subarray

    with tables.open_file(output_path) as h5file:
        assert h5file.get_node("/configuration/simulation/run") is not None
        assert h5file.get_node(
            "/simulation/service/shower_distribution") is not None
示例#5
0
def test_write(tmpdir: Path):
    """
    Check that we can write and read data from R0-DL2 to files

    Parameters
    ----------
    tmpdir :
        temp directory fixture
    """

    output_path = Path(tmpdir / "events.dl1.h5")
    source = EventSource(
        get_dataset_path(
            "gamma_LaPalma_baseline_20Zd_180Az_prod3b_test.simtel.gz"),
        max_events=20,
        allowed_tels=[1, 2, 3, 4],
        focal_length_choice='nominal',
    )
    calibrate = CameraCalibrator(subarray=source.subarray)

    with DataWriter(
            event_source=source,
            output_path=output_path,
            write_parameters=False,
            write_images=True,
            write_showers=True,
            write_raw_waveforms=True,
            write_waveforms=True,
    ) as writer:
        writer.log.level = logging.DEBUG
        for event in source:
            calibrate(event)
            generate_dummy_dl2(event)
            writer(event)
        writer.write_simulation_histograms(source)

    assert output_path.exists()

    # check we can get the subarray description:
    sub = SubarrayDescription.from_hdf(output_path)
    assert sub.num_tels > 0

    # check a few things in the output just to make sure there is output. For a
    # full test of the data model, a verify tool should be created.
    with tables.open_file(output_path) as h5file:
        # check R0:
        r0tel = h5file.get_node("/r0/event/telescope/tel_001")
        assert r0tel.col("waveform").max() > 0

        # check R1:
        r1tel = h5file.get_node("/r1/event/telescope/tel_001")
        assert r1tel.col("waveform").max() > 0

        # check DL1:
        images = h5file.get_node("/dl1/event/telescope/images/tel_001")
        assert images.col("image").max() > 0.0
        assert (h5file.root._v_attrs["CTA PRODUCT DATA MODEL VERSION"]  # pylint: disable=protected-access
                == DATA_MODEL_VERSION)
        shower = h5file.get_node("/simulation/event/subarray/shower")
        assert len(shower) > 0
        assert shower.col("true_alt").mean() > 0.0
        assert (shower._v_attrs["true_alt_UNIT"] == "deg")  # pylint: disable=protected-access

        # check DL2:
        dl2_energy = h5file.get_node(
            "/dl2/event/subarray/energy/ImPACTReconstructor")
        assert np.allclose(dl2_energy.col("energy"), 10)
        assert np.count_nonzero(dl2_energy.col("tel_ids")[0]) == 3

        dl2_tel_energy = h5file.get_node(
            "/dl2/event/telescope/energy/HillasReconstructor/tel_002")
        assert np.allclose(dl2_tel_energy.col("energy"), 10)
        assert "tel_ids" not in dl2_tel_energy
示例#6
0
def test_roundtrip(tmpdir: Path):
    """
    Check that we can write DL1+DL2 info to files and read them back

    Parameters
    ----------
    tmpdir :
        temp directory fixture
    """

    output_path = Path(tmpdir / "events.DL1DL2.h5")
    source = EventSource(
        get_dataset_path(
            "gamma_LaPalma_baseline_20Zd_180Az_prod3b_test.simtel.gz"),
        max_events=20,
        allowed_tels=[1, 2, 3, 4],
        focal_length_choice='nominal',
    )
    calibrate = CameraCalibrator(subarray=source.subarray)

    events = []

    with DataWriter(
            event_source=source,
            output_path=output_path,
            write_parameters=False,
            write_images=True,
            transform_image=True,
            image_dtype="int32",
            image_scale=10,
            transform_peak_time=True,
            peak_time_dtype="int16",
            peak_time_scale=100,
            write_showers=True,
    ) as write:
        write.log.level = logging.DEBUG
        for event in source:
            calibrate(event)
            generate_dummy_dl2(event)
            write(event)
            events.append(deepcopy(event))
        write.write_simulation_histograms(source)
        assert DataLevel.DL1_IMAGES in write.datalevels
        assert DataLevel.DL1_PARAMETERS not in write.datalevels
        assert DataLevel.DL2 in write.datalevels

    assert output_path.exists()

    # check we can get the subarray description:
    sub = SubarrayDescription.from_hdf(output_path)
    assert sub.num_tels > 0

    # check a few things in the output just to make sure there is output. For a
    # full test of the data model, a verify tool should be created.
    with tables.open_file(output_path) as h5file:
        images = h5file.get_node("/dl1/event/telescope/images/tel_001")

        assert len(images) > 0
        assert images.col("image").dtype == np.int32
        assert images.col("peak_time").dtype == np.int16
        assert images.col("image").max() > 0.0

    # make sure it is readable by the event source and matches the images

    for event in EventSource(output_path):

        for tel_id, dl1 in event.dl1.tel.items():
            original_image = events[event.count].dl1.tel[tel_id].image
            read_image = dl1.image
            assert np.allclose(original_image, read_image, atol=0.1)

            original_peaktime = events[event.count].dl1.tel[tel_id].peak_time
            read_peaktime = dl1.peak_time
            assert np.allclose(original_peaktime, read_peaktime, atol=0.01)