def test_set_cuts_clear(): flow = CutFlow("TestFlow") flow.set_cut("smaller5", smaller5) flow.set_cuts(OrderedDict([("smaller3", smaller3), ("smaller2", smaller2)]), clear=True) assert flow.cuts == OrderedDict([("smaller3", [smaller3, 0]), ("smaller2", [smaller2, 0])])
def test_set_cuts_clear(): flow = CutFlow("TestFlow") flow.set_cut("smaller5", smaller5) flow.set_cuts(OrderedDict([ ("smaller3", smaller3), ("smaller2", smaller2) ]), clear=True) assert flow.cuts == OrderedDict([ ("smaller3", [smaller3, 0]), ("smaller2", [smaller2, 0]) ])
def test_set_cuts_no_clear(): with warns(FutureWarning): flow = CutFlow("TestFlow") flow.set_cut("smaller5", smaller5) flow.set_cuts(OrderedDict([("smaller3", smaller3), ("smaller2", smaller2)]), clear=False) assert flow.cuts == OrderedDict([ ("smaller5", [smaller5, 0]), ("smaller3", [smaller3, 0]), ("smaller2", [smaller2, 0]), ])
class SimpleEventWriter(Tool): name = 'ctapipe-simple-event-writer' description = Unicode(__doc__) infile = Unicode(help='input file to read', default='').tag(config=True) outfile = Unicode(help='output file name', default_value='output.h5').tag(config=True) progress = Bool(help='display progress bar', default_value=True).tag(config=True) aliases = Dict({ 'infile': 'EventSource.input_url', 'outfile': 'SimpleEventWriter.outfile', 'max-events': 'EventSource.max_events', 'progress': 'SimpleEventWriter.progress' }) classes = List([EventSource, CameraCalibrator, CutFlow]) def setup(self): self.log.info('Configure EventSource...') self.event_source = self.add_component( EventSource.from_config(config=self.config, parent=self)) self.calibrator = self.add_component(CameraCalibrator(parent=self)) self.writer = self.add_component( HDF5TableWriter(filename=self.outfile, group_name='image_infos', overwrite=True)) # Define Pre-selection for images preselcuts = self.config['Preselect'] self.image_cutflow = CutFlow('Image preselection') self.image_cutflow.set_cuts( dict(no_sel=None, n_pixel=lambda s: np.count_nonzero(s) < preselcuts['n_pixel'][ 'min'], image_amplitude=lambda q: q < preselcuts['image_amplitude'][ 'min'])) # Define Pre-selection for events self.event_cutflow = CutFlow('Event preselection') self.event_cutflow.set_cuts(dict(no_sel=None)) def start(self): self.log.info('Loop on events...') for event in tqdm(self.event_source, desc='EventWriter', total=self.event_source.max_events, disable=~self.progress): self.event_cutflow.count('no_sel') self.calibrator(event) for tel_id in event.dl0.tels_with_data: self.image_cutflow.count('no_sel') camera = event.inst.subarray.tel[tel_id].camera dl1_tel = event.dl1.tel[tel_id] # Image cleaning image = dl1_tel.image # Waiting for automatic gain selection mask = tailcuts_clean(camera, image, picture_thresh=10, boundary_thresh=5) cleaned = image.copy() cleaned[~mask] = 0 # Preselection cuts if self.image_cutflow.cut('n_pixel', cleaned): continue if self.image_cutflow.cut('image_amplitude', np.sum(cleaned)): continue # Image parametrisation params = hillas_parameters(camera, cleaned) # Save Ids, MC infos and Hillas informations self.writer.write(camera.cam_id, [event.r0, event.mc, params]) def finish(self): self.log.info('End of job.') self.image_cutflow() self.event_cutflow() self.writer.close()
class SimpleEventWriter(Tool): name = 'ctapipe-simple-event-writer' description = Unicode(__doc__) infile = Unicode(help='input file to read', default='').tag(config=True) outfile = Unicode(help='output file name', default_value='output.h5').tag(config=True) progress = Bool(help='display progress bar', default_value=True).tag(config=True) aliases = Dict({ 'infile': 'EventSourceFactory.input_url', 'outfile': 'SimpleEventWriter.outfile', 'max-events': 'EventSourceFactory.max_events', 'progress': 'SimpleEventWriter.progress' }) classes = List([EventSourceFactory, CameraCalibrator, CutFlow]) def setup(self): self.log.info('Configure EventSourceFactory...') self.event_source = EventSourceFactory.produce( config=self.config, tool=self, product='SimTelEventSource' ) self.event_source.allowed_tels = self.config['Analysis']['allowed_tels'] self.calibrator = CameraCalibrator( config=self.config, tool=self, eventsource=self.event_source ) self.writer = HDF5TableWriter( filename=self.outfile, group_name='image_infos', overwrite=True ) # Define Pre-selection for images preselcuts = self.config['Preselect'] self.image_cutflow = CutFlow('Image preselection') self.image_cutflow.set_cuts(dict( no_sel=None, n_pixel=lambda s: np.count_nonzero(s) < preselcuts['n_pixel']['min'], image_amplitude=lambda q: q < preselcuts['image_amplitude']['min'] )) # Define Pre-selection for events self.event_cutflow = CutFlow('Event preselection') self.event_cutflow.set_cuts(dict( no_sel=None )) def start(self): self.log.info('Loop on events...') for event in tqdm( self.event_source, desc='EventWriter', total=self.event_source.max_events, disable=~self.progress): self.event_cutflow.count('no_sel') self.calibrator.calibrate(event) for tel_id in event.dl0.tels_with_data: self.image_cutflow.count('no_sel') camera = event.inst.subarray.tel[tel_id].camera dl1_tel = event.dl1.tel[tel_id] # Image cleaning image = dl1_tel.image[0] # Waiting for automatic gain selection mask = tailcuts_clean(camera, image, picture_thresh=10, boundary_thresh=5) cleaned = image.copy() cleaned[~mask] = 0 # Preselection cuts if self.image_cutflow.cut('n_pixel', cleaned): continue if self.image_cutflow.cut('image_amplitude', np.sum(cleaned)): continue # Image parametrisation params = hillas_parameters(camera, cleaned) # Save Ids, MC infos and Hillas informations self.writer.write(camera.cam_id, [event.r0, event.mc, params]) def finish(self): self.log.info('End of job.') self.image_cutflow() self.event_cutflow() self.writer.close()