示例#1
0
def show_absolute_error_angular(predicted_alt, predicted_az, true_alt, true_az, bias_correction=False, 
                                ax=None, bins=40, percentile_plot_range=80):
    """
    Show the absolute error distribution of a method.
    """
    # Create new figure
    if ax is None:
        plt.figure(figsize=(6,6))
        ax = plt.gca()
    
    bins = np.linspace(0.01,10,50)
    ax = ctaplot.plot_theta2(predicted_alt, predicted_az, true_alt, true_az, bias_correction, ax, bins=bins)
    return ax
示例#2
0
def direction_results(dl2_data, points_outfile=None, plot_outfile=None):
    """
    
    Parameters
    ----------
    dl2_data: `pandas.DataFrame`
    points_outfile: None or str
        filename to save angular resolution data points
    plot_outfile: None or str
        filename to save the figure

    Returns
    -------
    fig, axes: `matplotlib.pyplot.figure`, `matplotlib.pyplot.axes`
    """

    fig, axes = plt.subplots(2, 2, figsize=(15, 12))

    ax = ctaplot.plot_theta2(
        dl2_data.reco_alt,
        dl2_data.reco_az,
        dl2_data.mc_alt,
        dl2_data.mc_az,
        ax=axes[0, 0],
        bins=100,
        range=(0, 1),
    )
    ax.grid()

    ctaplot.plot_angular_resolution_per_energy(
        dl2_data.reco_alt,
        dl2_data.reco_az,
        dl2_data.mc_alt,
        dl2_data.mc_az,
        dl2_data.reco_energy,
        ax=axes[0, 1],
    )

    ctaplot.plot_angular_resolution_cta_requirement('north',
                                                    ax=axes[0, 1],
                                                    color='black')
    axes[0, 1].grid()
    axes[0, 1].legend()

    ctaplot.plot_migration_matrix(
        dl2_data.mc_alt,
        dl2_data.reco_alt,
        ax=axes[1, 0],
        colorbar=True,
        xy_line=True,
        hist2d_args=dict(norm=matplotlib.colors.LogNorm()),
        line_args=dict(color='black'),
    )
    axes[1, 0].set_xlabel('simu alt [rad]')
    axes[1, 0].set_ylabel('reco alt [rad]')

    ctaplot.plot_migration_matrix(
        dl2_data.mc_az,
        dl2_data.reco_az,
        ax=axes[1, 1],
        colorbar=True,
        xy_line=True,
        hist2d_args=dict(norm=matplotlib.colors.LogNorm()),
        line_args=dict(color='black'),
    )
    axes[1, 1].set_xlabel('simu az [rad]')
    axes[1, 1].set_ylabel('reco az [rad]')

    fig.tight_layout()

    if points_outfile:
        e_bins, ang_res = ctaplot.angular_resolution_per_energy(
            dl2_data.reco_alt,
            dl2_data.reco_az,
            dl2_data.mc_alt,
            dl2_data.mc_az,
            dl2_data.reco_energy,
        )

        write_angular_resolutions(points_outfile, e_bins * u.TeV,
                                  ang_res * u.rad)

    if plot_outfile:
        fig.savefig(plot_outfile)

    return fig, axes
def main():

    custom_config = {}
    if args.config_file is not None:
        try:
            custom_config = read_configuration_file(args.config_file)
        except ("Custom configuration could not be loaded !!!"):
            pass

    config = replace_config(standard_config, custom_config)

    reg_energy, reg_disp_vector, cls_gh = dl1_to_dl2.build_models(
        args.gammafile,
        args.protonfile,
        save_models=args.storerf,
        path_models=args.path_models,
        custom_config=config,
    )

    gammas = filter_events(
        pd.read_hdf(args.gammatest, key=dl1_params_lstcam_key),
        config["events_filters"],
    )
    proton = filter_events(
        pd.read_hdf(args.protontest, key=dl1_params_lstcam_key),
        config["events_filters"],
    )

    data = pd.concat([gammas, proton], ignore_index=True)

    dl2 = dl1_to_dl2.apply_models(data,
                                  cls_gh,
                                  reg_energy,
                                  reg_disp_vector,
                                  custom_config=config)

    ####PLOT SOME RESULTS#####

    gammas = dl2[dl2.gammaness >= 0.5]
    protons = dl2[dl2.gammaness < 0.5]
    gammas.reco_type = 0
    protons.reco_type = 1

    focal_length = 28 * u.m
    src_pos_reco = utils.reco_source_position_sky(
        gammas.x.values * u.m, gammas.y.values * u.m,
        gammas.reco_disp_dx.values * u.m, gammas.reco_disp_dy.values * u.m,
        focal_length, gammas.mc_alt_tel.values * u.rad,
        gammas.mc_az_tel.values * u.rad)

    plot_dl2.plot_features(dl2)
    plt.show()

    plot_dl2.plot_e(gammas, 10, 1.5, 3.5)
    plt.show()

    plot_dl2.calc_resolution(gammas)
    plt.show()

    plot_dl2.plot_e_resolution(gammas, 10, 1.5, 3.5)
    plt.show()

    plot_dl2.plot_disp_vector(gammas)
    plt.show()

    try:
        ctaplot.plot_theta2(
            gammas.mc_alt,
            np.arctan(np.tan(gammas.mc_az)),
            src_pos_reco.alt.rad,
            np.arctan(np.tan(src_pos_reco.az.rad)),
            bins=50,
            range=(0, 1),
        )
        plt.show()
        ctaplot.plot_angular_res_per_energy(
            src_pos_reco.alt.rad, np.arctan(np.tan(src_pos_reco.az.rad)),
            gammas.mc_alt, np.arctan(np.tan(gammas.mc_az)), gammas.mc_energy)
        plt.show()
    except:
        pass

    regression_features = config["regression_features"]
    classification_features = config["classification_features"]

    plt.show()
    plot_dl2.plot_pos(dl2)
    plt.show()
    plot_dl2.plot_ROC(cls_gh, dl2, classification_features, -1)
    plt.show()
    plot_dl2.plot_importances(cls_gh, classification_features)
    plt.show()
    plot_dl2.plot_importances(reg_energy, regression_features)
    plt.show()
    plot_dl2.plot_importances(reg_disp_vector, regression_features)
    plt.show()

    plt.hist(dl2[dl2['mc_type'] == 101]['gammaness'], bins=100)
    plt.hist(dl2[dl2['mc_type'] == 0]['gammaness'], bins=100)
    plt.show()
def main():
    ntelescopes_gamma = 4
    ntelescopes_protons = 4
    n_bins_energy = 20  #  Number of energy bins
    n_bins_gammaness = 11  #  Number of gammaness bins
    n_bins_theta2 = 10  #  Number of theta2 bins
    obstime = 50 * 3600 * u.s
    noff = 5

    energy, best_sens, result, units, gcut, tcut = find_best_cuts_sensitivity(
        args.dl1file_gammas, args.dl1file_protons, args.dl2_file_g_cuts,
        args.dl2_file_p_cuts, ntelescopes_gamma, ntelescopes_protons,
        n_bins_energy, n_bins_gammaness, n_bins_theta2, noff, obstime)

    # For testing using fixed cuts
    # gcut = np.ones(eb) * 0.8
    # tcut = np.ones(eb) * 0.01

    energy, best_sens, result, units, dl2 = sensitivity(
        args.dl1file_gammas, args.dl1file_protons, args.dl2_file_g_sens,
        args.dl2_file_p_sens, 1, 1, 20, gcut, tcut * (u.deg**2), noff, obstime)

    dl2.to_hdf('test_sens.h5', key='data')
    result.to_hdf('test_sens.h5', key='results')

    tab = Table.from_pandas(result)

    for i, key in enumerate(tab.columns.keys()):
        tab[key].unit = units[i]
        if key == 'sensitivity':
            continue
        tab[key].format = '8f'

    egeom = np.sqrt(energy[1:] * energy[:-1])

    plt.plot(egeom[:-1], tab['hadron_rate'], label='Hadron rate', marker='o')
    plt.plot(egeom[:-1], tab['gamma_rate'], label='Gamma rate', marker='o')
    plt.legend()
    plt.xscale('log')
    plt.xlabel('Energy (GeV)')
    plt.ylabel('events / min')
    plt.show()

    gammas_mc = dl2[dl2.mc_type == 0]
    protons_mc = dl2[dl2.mc_type == 101]

    sns.distplot(gammas_mc.gammaness, label='gammas')
    sns.distplot(protons_mc.gammaness, label='protons')
    plt.legend()
    plt.tight_layout()
    plt.show()
    sns.distplot(gammas_mc.mc_energy, label='gammas')
    sns.distplot(protons_mc.mc_energy, label='protons')
    plt.legend()
    plt.tight_layout()
    plt.show()

    sns.distplot(gammas_mc.reco_energy.apply(np.log10), label='gammas')
    sns.distplot(protons_mc.reco_energy.apply(np.log10), label='protons')
    plt.legend()
    plt.tight_layout()
    plt.show()
    ctaplot.plot_theta2(gammas_mc.reco_alt,
                        gammas_mc.reco_az,
                        gammas_mc.mc_alt,
                        gammas_mc.mc_az,
                        range=(0, 1),
                        bins=100)
    plt.show()
    plt.figure(figsize=(12, 8))
    ctaplot.plot_angular_res_per_energy(
        gammas_mc.reco_alt,
        gammas_mc.reco_az,
        gammas_mc.mc_alt,
        gammas_mc.mc_az,
        10**(gammas_mc.reco_energy - 3),
    )

    ctaplot.plot_angular_res_cta_requirements('north', color='black')

    plt.legend()
    plt.tight_layout()
    plt.show()

    plt.figure(figsize=(12, 8))
    ctaplot.plot_energy_resolution(gammas_mc.mc_energy, gammas_mc.reco_energy)
    ctaplot.plot_energy_resolution_cta_requirements('north', color='black')

    plt.legend()
    plt.tight_layout()
    plt.show()

    ctaplot.plot_energy_resolution(gammas_mc.mc_energy, gammas_mc.reco_energy)
    ctaplot.plot_energy_bias(10**(gammas_mc.mc_energy - 3),
                             10**(gammas_mc.reco_energy - 3))
    plt.show()

    gamma_ps_simu_info = read_simu_info_merged_hdf5(args.dl1file_gammas)
    emin = gamma_ps_simu_info.energy_range_min.value
    emax = gamma_ps_simu_info.energy_range_max.value
    total_number_of_events = gamma_ps_simu_info.num_showers * gamma_ps_simu_info.shower_reuse
    spectral_index = gamma_ps_simu_info.spectral_index
    area = (gamma_ps_simu_info.max_scatter_range.value -
            gamma_ps_simu_info.min_scatter_range.value)**2 * np.pi
    ctaplot.plot_effective_area_per_energy_power_law(
        emin,
        emax,
        total_number_of_events,
        spectral_index,
        10**(gammas_mc.reco_energy - 3)[gammas_mc.tel_id == 1],
        area,
        label='selected gammas',
        linestyle='--')

    ctaplot.plot_effective_area_cta_requirements('north', color='black')
    plt.legend()
    plt.tight_layout()
    plt.show()
示例#5
0
plt.legend()
plt.tight_layout()
plt.show()
sns.distplot(gammas_mc.mc_energy, label='gammas')
sns.distplot(protons_mc.mc_energy, label='protons')
plt.legend()
plt.tight_layout()
plt.show()
sns.distplot(gammas_mc.reco_energy, label='gammas')
sns.distplot(protons_mc.reco_energy, label='protons')
plt.legend()
plt.tight_layout()
plt.show()
ctaplot.plot_theta2(gammas_mc.reco_alt,
                    gammas_mc.reco_az,
                    gammas_mc.mc_alt,
                    gammas_mc.mc_az,
                    range=(0, 1),
                    bins=100)
plt.show()
plt.figure(figsize=(12, 8))
ctaplot.plot_angular_res_per_energy(
    gammas_mc.reco_alt,
    gammas_mc.reco_az,
    gammas_mc.mc_alt,
    gammas_mc.mc_az,
    10**(gammas_mc.reco_energy - 3),
)

ctaplot.plot_angular_res_cta_requirements('north', color='black')

plt.legend()
示例#6
0
def main():

    nfiles_gammas = 0.5  # 100*0.5 #Pointlike gammas
    nfiles_protons = 0.5  # 5000*0.8*0.5

    eb = 20  # Number of energy bins
    gb = 11  # Number of gammaness bins
    tb = 10  # Number of theta2 bins
    obstime = 50 * 3600 * u.s
    noff = 5

    E, best_sens, result, units, gcut, tcut = sensitivity.find_best_cuts_sens(
        args.dl1file_gammas, args.dl1file_protons, args.dl2_file_g_cuts,
        args.dl2_file_p_cuts, nfiles_gammas, nfiles_protons, eb, gb, tb, noff,
        obstime)
    E, best_sens, result, units, dl2 = sensitivity.sens(
        args.dl1file_gammas, args.dl1file_protons, args.dl2_file_g_sens,
        args.dl2_file_p_sens, nfiles_gammas, nfiles_protons, eb, gcut,
        tcut * (u.deg**2), noff, obstime)
    # plt.show()
    plot_utils.sens_plot(eb, E, best_sens)
    plt.show()

    tab = Table.from_pandas(result)

    for i, key in enumerate(tab.columns.keys()):
        tab[key].unit = units[i]
        if key == 'sensitivity':
            continue
        tab[key].format = '8f'

    print(tab)
    emed = np.sqrt(E[1:] * E[:-1])

    plt.plot(emed[:-1], tab['hadron_rate'], label='Hadron rate', marker='o')
    plt.plot(emed[:-1], tab['gamma_rate'], label='Gamma rate', marker='o')
    plt.legend()
    plt.xscale('log')
    plt.xlabel('Energy (GeV)')
    plt.ylabel('events / min')
    plt.show()

    gammas_mc = dl2[dl2.mc_type == 0]
    protons_mc = dl2[dl2.mc_type == 101]
    good_gammas = dl2

    sns.distplot(gammas_mc.gammaness, label='gammas')
    sns.distplot(protons_mc.gammaness, label='protons')
    plt.legend()
    plt.tight_layout()
    plt.show()
    sns.distplot(gammas_mc.mc_energy, label='gammas')
    sns.distplot(protons_mc.mc_energy, label='protons')
    plt.legend()
    plt.tight_layout()
    plt.show()
    sns.distplot(gammas_mc.log_reco_energy, label='gammas')
    sns.distplot(protons_mc.log_reco_energy, label='protons')
    plt.legend()
    plt.tight_layout()
    plt.show()
    ctaplot.plot_theta2(gammas_mc.reco_alt,
                        gammas_mc.reco_az,
                        gammas_mc.mc_alt,
                        gammas_mc.mc_az,
                        range=(0, 1),
                        bins=100)
    plt.show()
    plt.figure(figsize=(12, 8))
    ctaplot.plot_angular_res_per_energy(
        gammas_mc.reco_alt,
        gammas_mc.reco_az,
        gammas_mc.mc_alt,
        gammas_mc.mc_az,
        gammas_mc.reco_energy,
    )

    ctaplot.plot_angular_res_cta_requirements('north', color='black')

    plt.legend()
    plt.tight_layout()
    plt.show()
    plt.figure(figsize=(12, 8))
    ctaplot.plot_energy_resolution(10**(gammas_mc.mc_energy - 3),
                                   10**(gammas_mc.reco_energy - 3))

    ctaplot.plot_energy_resolution_cta_requirements('north', color='black')

    plt.legend()
    plt.tight_layout()
    plt.show()

    ctaplot.plot_energy_bias(10**(gammas_mc.mc_energy - 3),
                             10**(gammas_mc.reco_energy - 3))
    plt.show()

    gamma_ps_simu_info = read_simu_info_merged_hdf5(args.dl1file_gammas)
    emin = gamma_ps_simu_info.energy_range_min.value
    emax = gamma_ps_simu_info.energy_range_max.value
    total_number_of_events = gamma_ps_simu_info.num_showers * gamma_ps_simu_info.shower_reuse
    spectral_index = gamma_ps_simu_info.spectral_index
    area = (gamma_ps_simu_info.max_scatter_range.value -
            gamma_ps_simu_info.min_scatter_range.value)**2 * np.pi
    ctaplot.plot_effective_area_per_energy_power_law(
        emin,
        emax,
        total_number_of_events,
        spectral_index,
        gammas_mc.reco_energy[gammas_mc.tel_id == 1],
        area,
        label='selected gammas',
        linestyle='--',
    )

    ctaplot.plot_effective_area_cta_requirements('north', color='black')
    plt.legend()
    plt.tight_layout()
    plt.show()
def main():
    ntelescopes_gamma = 1
    ntelescopes_protons = 1
    n_bins_energy = 20  #  Number of energy bins
    obstime = 50 * 3600 * u.s
    noff = 5
    geff_gammaness = 0.8  #Gamma efficincy of gammaness cut
    geff_theta2 = 0.68
    #Gamma efficiency of theta2 cut

    # Calculate the sensitivity
    '''
    energy,sensitivity,result,events, gcut, tcut = sensitivity_gamma_efficiency(args.dl2_file_g,
                                                                                         args.dl2_file_p,
                                                                                         ntelescopes_gamma,
                                                                                         ntelescopes_protons,
                                                                                         n_bins_energy,
                                                                                         geff_gammaness,
                                                                                         geff_theta2,
                                                                                         noff,
                                                                                         obstime)


    '''

    mc_energy, mc_sensitivity, mc_result, mc_events, gcut, tcut = sensitivity_gamma_efficiency_real_protons(
        args.dl2_file_g, args.dl2_file_p, ntelescopes_gamma, n_bins_energy,
        geff_gammaness, geff_theta2, noff, obstime)

    # Saves the results
    #   mc_events.to_hdf(args.output_path+'/mc_sensitivity.h5', key='data', mode='w')
    mc_result.to_hdf(args.output_path + '/mc_sensitivity.h5', key='results')

    print("\nOptimal gammaness cuts:", gcut)
    print("Optimal theta2 cuts: {} \n".format(tcut))

    energy, sensitivity, result, events, gcut, tcut = sensitivity_gamma_efficiency_real_data(
        args.dl2_file_on, args.dl2_file_p, gcut, tcut, n_bins_energy,
        mc_energy, geff_gammaness, geff_theta2, noff, obstime)
    print("\nOptimal gammaness cuts:", gcut)
    print("Optimal theta2 cuts: {} \n".format(tcut))

    #events[events.mc_type==0].alt_tel = events[events.mc_type==0].mc_alt
    #events[events.mc_type==0].az_tel = events[events.mc_type==0].mc_az

    if not os.path.exists(args.output_path):
        os.makedirs(args.output_path)

    # Saves the results


#    events.to_hdf(args.output_path+'/sensitivity.h5', key='data', mode='w')
    result.to_hdf(args.output_path + '/sensitivity.h5', key='results')

    # Plots

    #Sensitivity
    ax = plt.axes()
    plot_utils.format_axes_sensitivity(ax)
    plot_utils.plot_MAGIC_sensitivity(ax, color='C0')
    plot_utils.plot_Crab_SED(ax, 100, 50, 5e4,
                             label="100% Crab")  #Energy in GeV
    plot_utils.plot_Crab_SED(ax, 10, 50, 5e4, linestyle='--',
                             label="10% Crab")  #Energy in GeV
    plot_utils.plot_Crab_SED(ax, 1, 50, 5e4, linestyle=':',
                             label="1% Crab")  #Energy in GeV
    plot_utils.plot_sensitivity(energy,
                                sensitivity,
                                ax,
                                color='orange',
                                label="Sensitivity real data")
    plot_utils.plot_sensitivity(energy,
                                mc_sensitivity,
                                ax,
                                color='green',
                                label="Sensitivity MC gammas")
    plt.legend(prop={'size': 12})
    plt.savefig(args.output_path + "/sensitivity.png")
    plt.show()

    #Rates

    egeom = np.sqrt(energy[1:] * energy[:-1])
    plt.plot(egeom, result['proton_rate'], label='Proton rate', marker='o')
    plt.plot(egeom, result['gamma_rate'], label='Gamma rate', marker='o')
    plt.legend()
    plt.grid()
    plt.xscale('log')
    plt.yscale('log')
    plt.xlabel('Energy (TeV)')
    plt.ylabel('events / min')
    plt.savefig(args.output_path + "/rates.png")
    plt.show()

    #Gammaness
    gammas_mc = pd.read_hdf(args.dl2_file_g, key=dl2_params_lstcam_key)
    protons_mc = pd.read_hdf(args.dl2_file_p, key=dl2_params_lstcam_key)
    sns.distplot(gammas_mc.gammaness, label='gammas')
    sns.distplot(protons_mc.gammaness, label='protons')
    plt.legend()
    plt.tight_layout()
    plt.savefig(args.output_path + "/distplot_gammaness.png")
    plt.show()
    '''
    #True Energy
    sns.distplot(gammas_mc.mc_energy, label='gammas');
    sns.distplot(protons_mc.mc_energy, label='protons');
    plt.legend()
    plt.tight_layout()
    plt.savefig(args.output_path+"/distplot_mc_energy.png")
    plt.show()

    #Reconstructed Energy
    sns.distplot(gammas_mc.reco_energy.apply(np.log10), label='gammas')
    sns.distplot(protons_mc.reco_energy.apply(np.log10), label='protons')
    plt.legend()
    plt.tight_layout()
    plt.savefig(args.output_path+"/distplot_energy_apply.png")
    plt.show()
    '''

    #Theta2
    ctaplot.plot_theta2(events.reco_alt,
                        events.reco_az,
                        events.alt_tel,
                        events.az_tel,
                        range=(0, 1),
                        bins=100)
    plt.savefig(args.output_path + "/theta2.png")
    plt.show()

    #Angular resolution
    ctaplot.plot_angular_resolution_per_energy(events.reco_alt, events.reco_az,
                                               events.alt_tel, events.az_tel,
                                               events.reco_energy)
    ctaplot.plot_angular_resolution_cta_requirement('north', color='black')

    plt.legend()
    plt.tight_layout()
    plt.savefig(args.output_path + "/angular_resolution.png")
    plt.show()

    #Energy resolution

    ctaplot.plot_energy_resolution(events[events.mc_type == 0].mc_energy,
                                   events[events.mc_type == 0].reco_energy)
    ctaplot.plot_energy_resolution_cta_requirement('north', color='black')
    plt.legend()
    plt.tight_layout()
    plt.savefig(args.output_path + "/effective_area.png")
    plt.show()

    #Energy bias

    ctaplot.plot_energy_bias(events[events.mc_type == 0].mc_energy,
                             events[events.mc_type == 0].reco_energy)
    plt.savefig(args.output_path + "/energy_bias.png")
    plt.show()

    #Effective Area

    gamma_ps_simu_info = read_simu_info_merged_hdf5(args.dl2_file_g)
    emin = gamma_ps_simu_info.energy_range_min.value
    emax = gamma_ps_simu_info.energy_range_max.value
    total_number_of_events = gamma_ps_simu_info.num_showers * gamma_ps_simu_info.shower_reuse * ntelescopes_gamma
    spectral_index = gamma_ps_simu_info.spectral_index
    area = (gamma_ps_simu_info.max_scatter_range.value -
            gamma_ps_simu_info.min_scatter_range.value)**2 * np.pi
    ctaplot.plot_effective_area_per_energy_power_law(emin,
                                                     emax,
                                                     total_number_of_events,
                                                     spectral_index,
                                                     events.reco_energy,
                                                     area,
                                                     label='selected gammas',
                                                     linestyle='--')

    ctaplot.plot_effective_area_cta_requirement('north', color='black')
    plt.ylim([2 * 10**3, 10**6])
    plt.legend()
    plt.tight_layout()
    plt.savefig(args.output_path + "/effective_area.png")
    plt.show()
示例#8
0
    plot_dl2.plot_e(gammas, 10, 1.5, 3.5)
    plt.show()

    plot_dl2.calc_resolution(gammas)
    plt.show()

    plot_dl2.plot_e_resolution(gammas, 10, 1.5, 3.5)
    plt.show()

    plot_dl2.plot_disp_vector(gammas)
    plt.show()

    ctaplot.plot_theta2(
        gammas.mc_alt,
        np.arctan(np.tan(gammas.mc_az)),
        src_pos_reco.alt.rad,
        np.arctan(np.tan(src_pos_reco.az.rad)),
        bins=50,
        range=(0, 1),
    )

    plt.show()
    ctaplot.plot_angular_res_per_energy(src_pos_reco.alt.rad,
                                        np.arctan(np.tan(src_pos_reco.az.rad)),
                                        gammas.mc_alt,
                                        np.arctan(np.tan(gammas.mc_az)),
                                        10**(gammas.mc_energy - 3))
    plt.show()

    features_ = [
        'intensity', 'width', 'length', 'x', 'y', 'psi', 'phi', 'wl',
        'skewness', 'kurtosis', 'r', 'time_gradient', 'intercept', 'leakage',
def main():
    ntelescopes_gamma = 4
    ntelescopes_protons = 1
    n_bins_energy = 20  #  Number of energy bins
    n_bins_gammaness = 10  #  Number of gammaness bins
    n_bins_theta2 = 10  #  Number of theta2 bins
    obstime = 50 * 3600 * u.s
    noff = 5

    # Finds the best cuts for the computation of the sensitivity
    '''energy, best_sens, result, units, gcut, tcut = find_best_cuts_sensitivity(args.dl1file_gammas,
                                                                              args.dl1file_protons,
                                                                              args.dl2_file_g_sens,
                                                                              args.dl2_file_p_sens,
                                                                              ntelescopes_gamma, ntelescopes_protons,
                                                                              n_bins_energy, n_bins_gammaness,
                                                                              n_bins_theta2, noff,
                                                                              obstime)
    '''
    #For testing using fixed cuts
    gcut = np.ones(n_bins_energy) * 0.8
    tcut = np.ones(n_bins_energy) * 0.01

    print("\nApplying optimal gammaness cuts:", gcut)
    print("Applying optimal theta2 cuts: {} \n".format(tcut))

    # Computes the sensitivity
    energy, best_sens, result, units, dl2 = sensitivity(
        args.dl1file_gammas, args.dl1file_protons,
        args.dl2_file_g_cuts, args.dl2_file_p_cuts, 1, 1, n_bins_energy, gcut,
        tcut * (u.deg**2), noff, obstime)

    egeom = np.sqrt(energy[1:] * energy[:-1])
    dFdE, par = crab_hegra(egeom)
    sensitivity_flux = best_sens / 100 * (dFdE * egeom * egeom).to(
        u.erg / (u.cm**2 * u.s))

    # Saves the results
    dl2.to_hdf('test_sens.h5', key='data')
    result.to_hdf('test_sens.h5', key='results')

    tab = Table.from_pandas(result)

    for i, key in enumerate(tab.columns.keys()):
        tab[key].unit = units[i]
        if key == 'sensitivity':
            continue
        tab[key].format = '8f'

    # Plots

    plt.figure(figsize=(12, 8))
    plt.plot(egeom[:-1], tab['hadron_rate'], label='Hadron rate', marker='o')
    plt.plot(egeom[:-1], tab['gamma_rate'], label='Gamma rate', marker='o')
    plt.legend()
    plt.xscale('log')
    plt.xlabel('Energy (TeV)')
    plt.ylabel('events / min')
    plt.show()
    plt.savefig("rates.png")

    plt.figure(figsize=(12, 8))
    gammas_mc = dl2[dl2.mc_type == 0]
    protons_mc = dl2[dl2.mc_type == 101]
    sns.distplot(gammas_mc.gammaness, label='gammas')
    sns.distplot(protons_mc.gammaness, label='protons')
    plt.legend()
    plt.tight_layout()
    plt.show()
    plt.savefig("distplot_gammaness.png")

    plt.figure(figsize=(12, 8))
    sns.distplot(gammas_mc.mc_energy, label='gammas')
    sns.distplot(protons_mc.mc_energy, label='protons')
    plt.legend()
    plt.tight_layout()
    plt.show()
    plt.savefig("distplot_mc_energy.png")

    plt.figure(figsize=(12, 8))
    sns.distplot(gammas_mc.reco_energy.apply(np.log10), label='gammas')
    sns.distplot(protons_mc.reco_energy.apply(np.log10), label='protons')
    plt.legend()
    plt.tight_layout()
    plt.show()
    plt.savefig("distplot_energy_apply.png")

    plt.figure(figsize=(12, 8))
    ctaplot.plot_theta2(gammas_mc.reco_alt,
                        gammas_mc.reco_az,
                        gammas_mc.mc_alt,
                        gammas_mc.mc_az,
                        range=(0, 1),
                        bins=100)
    plt.show()
    plt.savefig("theta2.png")

    plt.figure(figsize=(12, 8))
    ctaplot.plot_angular_resolution_per_energy(gammas_mc.reco_alt,
                                               gammas_mc.reco_az,
                                               gammas_mc.mc_alt,
                                               gammas_mc.mc_az,
                                               gammas_mc.reco_energy)
    ctaplot.plot_angular_resolution_cta_requirement('north', color='black')

    plt.legend()
    plt.tight_layout()
    plt.show()
    plt.savefig("angular_resolution.png")

    plt.figure(figsize=(12, 8))
    ctaplot.plot_energy_resolution(gammas_mc.mc_energy, gammas_mc.reco_energy)
    ctaplot.plot_energy_resolution_cta_requirement('north', color='black')
    plt.legend()
    plt.tight_layout()
    plt.show()
    plt.savefig("effective_area.png")

    plt.figure(figsize=(12, 8))
    ctaplot.plot_energy_bias(gammas_mc.mc_energy, gammas_mc.reco_energy)
    plt.show()
    plt.savefig("energy_bias.png")

    plt.figure(figsize=(12, 8))
    gamma_ps_simu_info = read_simu_info_merged_hdf5(args.dl1file_gammas)
    emin = gamma_ps_simu_info.energy_range_min.value
    emax = gamma_ps_simu_info.energy_range_max.value
    total_number_of_events = gamma_ps_simu_info.num_showers * gamma_ps_simu_info.shower_reuse
    spectral_index = gamma_ps_simu_info.spectral_index
    area = (gamma_ps_simu_info.max_scatter_range.value -
            gamma_ps_simu_info.min_scatter_range.value)**2 * np.pi
    ctaplot.plot_effective_area_per_energy_power_law(
        emin,
        emax,
        total_number_of_events,
        spectral_index,
        gammas_mc.reco_energy[gammas_mc.tel_id == 1],
        area,
        label='selected gammas',
        linestyle='--')

    ctaplot.plot_effective_area_cta_requirement('north', color='black')
    plt.ylim([2 * 10**3, 10**6])
    plt.legend()
    plt.tight_layout()
    plt.show()
    plt.savefig("effective_area.png")

    plt.figure(figsize=(12, 8))
    plt.plot(energy[0:len(sensitivity_flux)],
             sensitivity_flux,
             '-',
             color='red',
             markersize=0,
             label='LST mono')
    plt.xscale('log')
    plt.yscale('log')

    plt.ylabel('$\mathsf{E^2 F \; [erg \, cm^{-2} s^{-1}]}$', fontsize=16)
    plt.xlabel('E [TeV]')
    plt.xlim([10**-2, 100])
    plt.ylim([10**-14, 10**-9])
    plt.tight_layout()
    plt.savefig('sensitivity.png')

    plt.figure(figsize=(12, 8))
    ctaplot.plot_energy_resolution(gammas_mc.mc_energy,
                                   gammas_mc.reco_energy,
                                   percentile=68.27,
                                   confidence_level=0.95,
                                   bias_correction=False)
    ctaplot.plot_energy_resolution_cta_requirement('north', color='black')
    plt.xscale('log')
    plt.ylabel('\u0394 E/E 68\%')
    plt.xlabel('E [TeV]')
    plt.xlim([10**-2, 100])
    plt.ylim([0.08, 0.48])
    plt.tight_layout()

    plt.savefig('energy_resolution.png', dpi=100)