def show_absolute_error_angular(predicted_alt, predicted_az, true_alt, true_az, bias_correction=False, ax=None, bins=40, percentile_plot_range=80): """ Show the absolute error distribution of a method. """ # Create new figure if ax is None: plt.figure(figsize=(6,6)) ax = plt.gca() bins = np.linspace(0.01,10,50) ax = ctaplot.plot_theta2(predicted_alt, predicted_az, true_alt, true_az, bias_correction, ax, bins=bins) return ax
def direction_results(dl2_data, points_outfile=None, plot_outfile=None): """ Parameters ---------- dl2_data: `pandas.DataFrame` points_outfile: None or str filename to save angular resolution data points plot_outfile: None or str filename to save the figure Returns ------- fig, axes: `matplotlib.pyplot.figure`, `matplotlib.pyplot.axes` """ fig, axes = plt.subplots(2, 2, figsize=(15, 12)) ax = ctaplot.plot_theta2( dl2_data.reco_alt, dl2_data.reco_az, dl2_data.mc_alt, dl2_data.mc_az, ax=axes[0, 0], bins=100, range=(0, 1), ) ax.grid() ctaplot.plot_angular_resolution_per_energy( dl2_data.reco_alt, dl2_data.reco_az, dl2_data.mc_alt, dl2_data.mc_az, dl2_data.reco_energy, ax=axes[0, 1], ) ctaplot.plot_angular_resolution_cta_requirement('north', ax=axes[0, 1], color='black') axes[0, 1].grid() axes[0, 1].legend() ctaplot.plot_migration_matrix( dl2_data.mc_alt, dl2_data.reco_alt, ax=axes[1, 0], colorbar=True, xy_line=True, hist2d_args=dict(norm=matplotlib.colors.LogNorm()), line_args=dict(color='black'), ) axes[1, 0].set_xlabel('simu alt [rad]') axes[1, 0].set_ylabel('reco alt [rad]') ctaplot.plot_migration_matrix( dl2_data.mc_az, dl2_data.reco_az, ax=axes[1, 1], colorbar=True, xy_line=True, hist2d_args=dict(norm=matplotlib.colors.LogNorm()), line_args=dict(color='black'), ) axes[1, 1].set_xlabel('simu az [rad]') axes[1, 1].set_ylabel('reco az [rad]') fig.tight_layout() if points_outfile: e_bins, ang_res = ctaplot.angular_resolution_per_energy( dl2_data.reco_alt, dl2_data.reco_az, dl2_data.mc_alt, dl2_data.mc_az, dl2_data.reco_energy, ) write_angular_resolutions(points_outfile, e_bins * u.TeV, ang_res * u.rad) if plot_outfile: fig.savefig(plot_outfile) return fig, axes
def main(): custom_config = {} if args.config_file is not None: try: custom_config = read_configuration_file(args.config_file) except ("Custom configuration could not be loaded !!!"): pass config = replace_config(standard_config, custom_config) reg_energy, reg_disp_vector, cls_gh = dl1_to_dl2.build_models( args.gammafile, args.protonfile, save_models=args.storerf, path_models=args.path_models, custom_config=config, ) gammas = filter_events( pd.read_hdf(args.gammatest, key=dl1_params_lstcam_key), config["events_filters"], ) proton = filter_events( pd.read_hdf(args.protontest, key=dl1_params_lstcam_key), config["events_filters"], ) data = pd.concat([gammas, proton], ignore_index=True) dl2 = dl1_to_dl2.apply_models(data, cls_gh, reg_energy, reg_disp_vector, custom_config=config) ####PLOT SOME RESULTS##### gammas = dl2[dl2.gammaness >= 0.5] protons = dl2[dl2.gammaness < 0.5] gammas.reco_type = 0 protons.reco_type = 1 focal_length = 28 * u.m src_pos_reco = utils.reco_source_position_sky( gammas.x.values * u.m, gammas.y.values * u.m, gammas.reco_disp_dx.values * u.m, gammas.reco_disp_dy.values * u.m, focal_length, gammas.mc_alt_tel.values * u.rad, gammas.mc_az_tel.values * u.rad) plot_dl2.plot_features(dl2) plt.show() plot_dl2.plot_e(gammas, 10, 1.5, 3.5) plt.show() plot_dl2.calc_resolution(gammas) plt.show() plot_dl2.plot_e_resolution(gammas, 10, 1.5, 3.5) plt.show() plot_dl2.plot_disp_vector(gammas) plt.show() try: ctaplot.plot_theta2( gammas.mc_alt, np.arctan(np.tan(gammas.mc_az)), src_pos_reco.alt.rad, np.arctan(np.tan(src_pos_reco.az.rad)), bins=50, range=(0, 1), ) plt.show() ctaplot.plot_angular_res_per_energy( src_pos_reco.alt.rad, np.arctan(np.tan(src_pos_reco.az.rad)), gammas.mc_alt, np.arctan(np.tan(gammas.mc_az)), gammas.mc_energy) plt.show() except: pass regression_features = config["regression_features"] classification_features = config["classification_features"] plt.show() plot_dl2.plot_pos(dl2) plt.show() plot_dl2.plot_ROC(cls_gh, dl2, classification_features, -1) plt.show() plot_dl2.plot_importances(cls_gh, classification_features) plt.show() plot_dl2.plot_importances(reg_energy, regression_features) plt.show() plot_dl2.plot_importances(reg_disp_vector, regression_features) plt.show() plt.hist(dl2[dl2['mc_type'] == 101]['gammaness'], bins=100) plt.hist(dl2[dl2['mc_type'] == 0]['gammaness'], bins=100) plt.show()
def main(): ntelescopes_gamma = 4 ntelescopes_protons = 4 n_bins_energy = 20 # Number of energy bins n_bins_gammaness = 11 # Number of gammaness bins n_bins_theta2 = 10 # Number of theta2 bins obstime = 50 * 3600 * u.s noff = 5 energy, best_sens, result, units, gcut, tcut = find_best_cuts_sensitivity( args.dl1file_gammas, args.dl1file_protons, args.dl2_file_g_cuts, args.dl2_file_p_cuts, ntelescopes_gamma, ntelescopes_protons, n_bins_energy, n_bins_gammaness, n_bins_theta2, noff, obstime) # For testing using fixed cuts # gcut = np.ones(eb) * 0.8 # tcut = np.ones(eb) * 0.01 energy, best_sens, result, units, dl2 = sensitivity( args.dl1file_gammas, args.dl1file_protons, args.dl2_file_g_sens, args.dl2_file_p_sens, 1, 1, 20, gcut, tcut * (u.deg**2), noff, obstime) dl2.to_hdf('test_sens.h5', key='data') result.to_hdf('test_sens.h5', key='results') tab = Table.from_pandas(result) for i, key in enumerate(tab.columns.keys()): tab[key].unit = units[i] if key == 'sensitivity': continue tab[key].format = '8f' egeom = np.sqrt(energy[1:] * energy[:-1]) plt.plot(egeom[:-1], tab['hadron_rate'], label='Hadron rate', marker='o') plt.plot(egeom[:-1], tab['gamma_rate'], label='Gamma rate', marker='o') plt.legend() plt.xscale('log') plt.xlabel('Energy (GeV)') plt.ylabel('events / min') plt.show() gammas_mc = dl2[dl2.mc_type == 0] protons_mc = dl2[dl2.mc_type == 101] sns.distplot(gammas_mc.gammaness, label='gammas') sns.distplot(protons_mc.gammaness, label='protons') plt.legend() plt.tight_layout() plt.show() sns.distplot(gammas_mc.mc_energy, label='gammas') sns.distplot(protons_mc.mc_energy, label='protons') plt.legend() plt.tight_layout() plt.show() sns.distplot(gammas_mc.reco_energy.apply(np.log10), label='gammas') sns.distplot(protons_mc.reco_energy.apply(np.log10), label='protons') plt.legend() plt.tight_layout() plt.show() ctaplot.plot_theta2(gammas_mc.reco_alt, gammas_mc.reco_az, gammas_mc.mc_alt, gammas_mc.mc_az, range=(0, 1), bins=100) plt.show() plt.figure(figsize=(12, 8)) ctaplot.plot_angular_res_per_energy( gammas_mc.reco_alt, gammas_mc.reco_az, gammas_mc.mc_alt, gammas_mc.mc_az, 10**(gammas_mc.reco_energy - 3), ) ctaplot.plot_angular_res_cta_requirements('north', color='black') plt.legend() plt.tight_layout() plt.show() plt.figure(figsize=(12, 8)) ctaplot.plot_energy_resolution(gammas_mc.mc_energy, gammas_mc.reco_energy) ctaplot.plot_energy_resolution_cta_requirements('north', color='black') plt.legend() plt.tight_layout() plt.show() ctaplot.plot_energy_resolution(gammas_mc.mc_energy, gammas_mc.reco_energy) ctaplot.plot_energy_bias(10**(gammas_mc.mc_energy - 3), 10**(gammas_mc.reco_energy - 3)) plt.show() gamma_ps_simu_info = read_simu_info_merged_hdf5(args.dl1file_gammas) emin = gamma_ps_simu_info.energy_range_min.value emax = gamma_ps_simu_info.energy_range_max.value total_number_of_events = gamma_ps_simu_info.num_showers * gamma_ps_simu_info.shower_reuse spectral_index = gamma_ps_simu_info.spectral_index area = (gamma_ps_simu_info.max_scatter_range.value - gamma_ps_simu_info.min_scatter_range.value)**2 * np.pi ctaplot.plot_effective_area_per_energy_power_law( emin, emax, total_number_of_events, spectral_index, 10**(gammas_mc.reco_energy - 3)[gammas_mc.tel_id == 1], area, label='selected gammas', linestyle='--') ctaplot.plot_effective_area_cta_requirements('north', color='black') plt.legend() plt.tight_layout() plt.show()
plt.legend() plt.tight_layout() plt.show() sns.distplot(gammas_mc.mc_energy, label='gammas') sns.distplot(protons_mc.mc_energy, label='protons') plt.legend() plt.tight_layout() plt.show() sns.distplot(gammas_mc.reco_energy, label='gammas') sns.distplot(protons_mc.reco_energy, label='protons') plt.legend() plt.tight_layout() plt.show() ctaplot.plot_theta2(gammas_mc.reco_alt, gammas_mc.reco_az, gammas_mc.mc_alt, gammas_mc.mc_az, range=(0, 1), bins=100) plt.show() plt.figure(figsize=(12, 8)) ctaplot.plot_angular_res_per_energy( gammas_mc.reco_alt, gammas_mc.reco_az, gammas_mc.mc_alt, gammas_mc.mc_az, 10**(gammas_mc.reco_energy - 3), ) ctaplot.plot_angular_res_cta_requirements('north', color='black') plt.legend()
def main(): nfiles_gammas = 0.5 # 100*0.5 #Pointlike gammas nfiles_protons = 0.5 # 5000*0.8*0.5 eb = 20 # Number of energy bins gb = 11 # Number of gammaness bins tb = 10 # Number of theta2 bins obstime = 50 * 3600 * u.s noff = 5 E, best_sens, result, units, gcut, tcut = sensitivity.find_best_cuts_sens( args.dl1file_gammas, args.dl1file_protons, args.dl2_file_g_cuts, args.dl2_file_p_cuts, nfiles_gammas, nfiles_protons, eb, gb, tb, noff, obstime) E, best_sens, result, units, dl2 = sensitivity.sens( args.dl1file_gammas, args.dl1file_protons, args.dl2_file_g_sens, args.dl2_file_p_sens, nfiles_gammas, nfiles_protons, eb, gcut, tcut * (u.deg**2), noff, obstime) # plt.show() plot_utils.sens_plot(eb, E, best_sens) plt.show() tab = Table.from_pandas(result) for i, key in enumerate(tab.columns.keys()): tab[key].unit = units[i] if key == 'sensitivity': continue tab[key].format = '8f' print(tab) emed = np.sqrt(E[1:] * E[:-1]) plt.plot(emed[:-1], tab['hadron_rate'], label='Hadron rate', marker='o') plt.plot(emed[:-1], tab['gamma_rate'], label='Gamma rate', marker='o') plt.legend() plt.xscale('log') plt.xlabel('Energy (GeV)') plt.ylabel('events / min') plt.show() gammas_mc = dl2[dl2.mc_type == 0] protons_mc = dl2[dl2.mc_type == 101] good_gammas = dl2 sns.distplot(gammas_mc.gammaness, label='gammas') sns.distplot(protons_mc.gammaness, label='protons') plt.legend() plt.tight_layout() plt.show() sns.distplot(gammas_mc.mc_energy, label='gammas') sns.distplot(protons_mc.mc_energy, label='protons') plt.legend() plt.tight_layout() plt.show() sns.distplot(gammas_mc.log_reco_energy, label='gammas') sns.distplot(protons_mc.log_reco_energy, label='protons') plt.legend() plt.tight_layout() plt.show() ctaplot.plot_theta2(gammas_mc.reco_alt, gammas_mc.reco_az, gammas_mc.mc_alt, gammas_mc.mc_az, range=(0, 1), bins=100) plt.show() plt.figure(figsize=(12, 8)) ctaplot.plot_angular_res_per_energy( gammas_mc.reco_alt, gammas_mc.reco_az, gammas_mc.mc_alt, gammas_mc.mc_az, gammas_mc.reco_energy, ) ctaplot.plot_angular_res_cta_requirements('north', color='black') plt.legend() plt.tight_layout() plt.show() plt.figure(figsize=(12, 8)) ctaplot.plot_energy_resolution(10**(gammas_mc.mc_energy - 3), 10**(gammas_mc.reco_energy - 3)) ctaplot.plot_energy_resolution_cta_requirements('north', color='black') plt.legend() plt.tight_layout() plt.show() ctaplot.plot_energy_bias(10**(gammas_mc.mc_energy - 3), 10**(gammas_mc.reco_energy - 3)) plt.show() gamma_ps_simu_info = read_simu_info_merged_hdf5(args.dl1file_gammas) emin = gamma_ps_simu_info.energy_range_min.value emax = gamma_ps_simu_info.energy_range_max.value total_number_of_events = gamma_ps_simu_info.num_showers * gamma_ps_simu_info.shower_reuse spectral_index = gamma_ps_simu_info.spectral_index area = (gamma_ps_simu_info.max_scatter_range.value - gamma_ps_simu_info.min_scatter_range.value)**2 * np.pi ctaplot.plot_effective_area_per_energy_power_law( emin, emax, total_number_of_events, spectral_index, gammas_mc.reco_energy[gammas_mc.tel_id == 1], area, label='selected gammas', linestyle='--', ) ctaplot.plot_effective_area_cta_requirements('north', color='black') plt.legend() plt.tight_layout() plt.show()
def main(): ntelescopes_gamma = 1 ntelescopes_protons = 1 n_bins_energy = 20 # Number of energy bins obstime = 50 * 3600 * u.s noff = 5 geff_gammaness = 0.8 #Gamma efficincy of gammaness cut geff_theta2 = 0.68 #Gamma efficiency of theta2 cut # Calculate the sensitivity ''' energy,sensitivity,result,events, gcut, tcut = sensitivity_gamma_efficiency(args.dl2_file_g, args.dl2_file_p, ntelescopes_gamma, ntelescopes_protons, n_bins_energy, geff_gammaness, geff_theta2, noff, obstime) ''' mc_energy, mc_sensitivity, mc_result, mc_events, gcut, tcut = sensitivity_gamma_efficiency_real_protons( args.dl2_file_g, args.dl2_file_p, ntelescopes_gamma, n_bins_energy, geff_gammaness, geff_theta2, noff, obstime) # Saves the results # mc_events.to_hdf(args.output_path+'/mc_sensitivity.h5', key='data', mode='w') mc_result.to_hdf(args.output_path + '/mc_sensitivity.h5', key='results') print("\nOptimal gammaness cuts:", gcut) print("Optimal theta2 cuts: {} \n".format(tcut)) energy, sensitivity, result, events, gcut, tcut = sensitivity_gamma_efficiency_real_data( args.dl2_file_on, args.dl2_file_p, gcut, tcut, n_bins_energy, mc_energy, geff_gammaness, geff_theta2, noff, obstime) print("\nOptimal gammaness cuts:", gcut) print("Optimal theta2 cuts: {} \n".format(tcut)) #events[events.mc_type==0].alt_tel = events[events.mc_type==0].mc_alt #events[events.mc_type==0].az_tel = events[events.mc_type==0].mc_az if not os.path.exists(args.output_path): os.makedirs(args.output_path) # Saves the results # events.to_hdf(args.output_path+'/sensitivity.h5', key='data', mode='w') result.to_hdf(args.output_path + '/sensitivity.h5', key='results') # Plots #Sensitivity ax = plt.axes() plot_utils.format_axes_sensitivity(ax) plot_utils.plot_MAGIC_sensitivity(ax, color='C0') plot_utils.plot_Crab_SED(ax, 100, 50, 5e4, label="100% Crab") #Energy in GeV plot_utils.plot_Crab_SED(ax, 10, 50, 5e4, linestyle='--', label="10% Crab") #Energy in GeV plot_utils.plot_Crab_SED(ax, 1, 50, 5e4, linestyle=':', label="1% Crab") #Energy in GeV plot_utils.plot_sensitivity(energy, sensitivity, ax, color='orange', label="Sensitivity real data") plot_utils.plot_sensitivity(energy, mc_sensitivity, ax, color='green', label="Sensitivity MC gammas") plt.legend(prop={'size': 12}) plt.savefig(args.output_path + "/sensitivity.png") plt.show() #Rates egeom = np.sqrt(energy[1:] * energy[:-1]) plt.plot(egeom, result['proton_rate'], label='Proton rate', marker='o') plt.plot(egeom, result['gamma_rate'], label='Gamma rate', marker='o') plt.legend() plt.grid() plt.xscale('log') plt.yscale('log') plt.xlabel('Energy (TeV)') plt.ylabel('events / min') plt.savefig(args.output_path + "/rates.png") plt.show() #Gammaness gammas_mc = pd.read_hdf(args.dl2_file_g, key=dl2_params_lstcam_key) protons_mc = pd.read_hdf(args.dl2_file_p, key=dl2_params_lstcam_key) sns.distplot(gammas_mc.gammaness, label='gammas') sns.distplot(protons_mc.gammaness, label='protons') plt.legend() plt.tight_layout() plt.savefig(args.output_path + "/distplot_gammaness.png") plt.show() ''' #True Energy sns.distplot(gammas_mc.mc_energy, label='gammas'); sns.distplot(protons_mc.mc_energy, label='protons'); plt.legend() plt.tight_layout() plt.savefig(args.output_path+"/distplot_mc_energy.png") plt.show() #Reconstructed Energy sns.distplot(gammas_mc.reco_energy.apply(np.log10), label='gammas') sns.distplot(protons_mc.reco_energy.apply(np.log10), label='protons') plt.legend() plt.tight_layout() plt.savefig(args.output_path+"/distplot_energy_apply.png") plt.show() ''' #Theta2 ctaplot.plot_theta2(events.reco_alt, events.reco_az, events.alt_tel, events.az_tel, range=(0, 1), bins=100) plt.savefig(args.output_path + "/theta2.png") plt.show() #Angular resolution ctaplot.plot_angular_resolution_per_energy(events.reco_alt, events.reco_az, events.alt_tel, events.az_tel, events.reco_energy) ctaplot.plot_angular_resolution_cta_requirement('north', color='black') plt.legend() plt.tight_layout() plt.savefig(args.output_path + "/angular_resolution.png") plt.show() #Energy resolution ctaplot.plot_energy_resolution(events[events.mc_type == 0].mc_energy, events[events.mc_type == 0].reco_energy) ctaplot.plot_energy_resolution_cta_requirement('north', color='black') plt.legend() plt.tight_layout() plt.savefig(args.output_path + "/effective_area.png") plt.show() #Energy bias ctaplot.plot_energy_bias(events[events.mc_type == 0].mc_energy, events[events.mc_type == 0].reco_energy) plt.savefig(args.output_path + "/energy_bias.png") plt.show() #Effective Area gamma_ps_simu_info = read_simu_info_merged_hdf5(args.dl2_file_g) emin = gamma_ps_simu_info.energy_range_min.value emax = gamma_ps_simu_info.energy_range_max.value total_number_of_events = gamma_ps_simu_info.num_showers * gamma_ps_simu_info.shower_reuse * ntelescopes_gamma spectral_index = gamma_ps_simu_info.spectral_index area = (gamma_ps_simu_info.max_scatter_range.value - gamma_ps_simu_info.min_scatter_range.value)**2 * np.pi ctaplot.plot_effective_area_per_energy_power_law(emin, emax, total_number_of_events, spectral_index, events.reco_energy, area, label='selected gammas', linestyle='--') ctaplot.plot_effective_area_cta_requirement('north', color='black') plt.ylim([2 * 10**3, 10**6]) plt.legend() plt.tight_layout() plt.savefig(args.output_path + "/effective_area.png") plt.show()
plot_dl2.plot_e(gammas, 10, 1.5, 3.5) plt.show() plot_dl2.calc_resolution(gammas) plt.show() plot_dl2.plot_e_resolution(gammas, 10, 1.5, 3.5) plt.show() plot_dl2.plot_disp_vector(gammas) plt.show() ctaplot.plot_theta2( gammas.mc_alt, np.arctan(np.tan(gammas.mc_az)), src_pos_reco.alt.rad, np.arctan(np.tan(src_pos_reco.az.rad)), bins=50, range=(0, 1), ) plt.show() ctaplot.plot_angular_res_per_energy(src_pos_reco.alt.rad, np.arctan(np.tan(src_pos_reco.az.rad)), gammas.mc_alt, np.arctan(np.tan(gammas.mc_az)), 10**(gammas.mc_energy - 3)) plt.show() features_ = [ 'intensity', 'width', 'length', 'x', 'y', 'psi', 'phi', 'wl', 'skewness', 'kurtosis', 'r', 'time_gradient', 'intercept', 'leakage',
def main(): ntelescopes_gamma = 4 ntelescopes_protons = 1 n_bins_energy = 20 # Number of energy bins n_bins_gammaness = 10 # Number of gammaness bins n_bins_theta2 = 10 # Number of theta2 bins obstime = 50 * 3600 * u.s noff = 5 # Finds the best cuts for the computation of the sensitivity '''energy, best_sens, result, units, gcut, tcut = find_best_cuts_sensitivity(args.dl1file_gammas, args.dl1file_protons, args.dl2_file_g_sens, args.dl2_file_p_sens, ntelescopes_gamma, ntelescopes_protons, n_bins_energy, n_bins_gammaness, n_bins_theta2, noff, obstime) ''' #For testing using fixed cuts gcut = np.ones(n_bins_energy) * 0.8 tcut = np.ones(n_bins_energy) * 0.01 print("\nApplying optimal gammaness cuts:", gcut) print("Applying optimal theta2 cuts: {} \n".format(tcut)) # Computes the sensitivity energy, best_sens, result, units, dl2 = sensitivity( args.dl1file_gammas, args.dl1file_protons, args.dl2_file_g_cuts, args.dl2_file_p_cuts, 1, 1, n_bins_energy, gcut, tcut * (u.deg**2), noff, obstime) egeom = np.sqrt(energy[1:] * energy[:-1]) dFdE, par = crab_hegra(egeom) sensitivity_flux = best_sens / 100 * (dFdE * egeom * egeom).to( u.erg / (u.cm**2 * u.s)) # Saves the results dl2.to_hdf('test_sens.h5', key='data') result.to_hdf('test_sens.h5', key='results') tab = Table.from_pandas(result) for i, key in enumerate(tab.columns.keys()): tab[key].unit = units[i] if key == 'sensitivity': continue tab[key].format = '8f' # Plots plt.figure(figsize=(12, 8)) plt.plot(egeom[:-1], tab['hadron_rate'], label='Hadron rate', marker='o') plt.plot(egeom[:-1], tab['gamma_rate'], label='Gamma rate', marker='o') plt.legend() plt.xscale('log') plt.xlabel('Energy (TeV)') plt.ylabel('events / min') plt.show() plt.savefig("rates.png") plt.figure(figsize=(12, 8)) gammas_mc = dl2[dl2.mc_type == 0] protons_mc = dl2[dl2.mc_type == 101] sns.distplot(gammas_mc.gammaness, label='gammas') sns.distplot(protons_mc.gammaness, label='protons') plt.legend() plt.tight_layout() plt.show() plt.savefig("distplot_gammaness.png") plt.figure(figsize=(12, 8)) sns.distplot(gammas_mc.mc_energy, label='gammas') sns.distplot(protons_mc.mc_energy, label='protons') plt.legend() plt.tight_layout() plt.show() plt.savefig("distplot_mc_energy.png") plt.figure(figsize=(12, 8)) sns.distplot(gammas_mc.reco_energy.apply(np.log10), label='gammas') sns.distplot(protons_mc.reco_energy.apply(np.log10), label='protons') plt.legend() plt.tight_layout() plt.show() plt.savefig("distplot_energy_apply.png") plt.figure(figsize=(12, 8)) ctaplot.plot_theta2(gammas_mc.reco_alt, gammas_mc.reco_az, gammas_mc.mc_alt, gammas_mc.mc_az, range=(0, 1), bins=100) plt.show() plt.savefig("theta2.png") plt.figure(figsize=(12, 8)) ctaplot.plot_angular_resolution_per_energy(gammas_mc.reco_alt, gammas_mc.reco_az, gammas_mc.mc_alt, gammas_mc.mc_az, gammas_mc.reco_energy) ctaplot.plot_angular_resolution_cta_requirement('north', color='black') plt.legend() plt.tight_layout() plt.show() plt.savefig("angular_resolution.png") plt.figure(figsize=(12, 8)) ctaplot.plot_energy_resolution(gammas_mc.mc_energy, gammas_mc.reco_energy) ctaplot.plot_energy_resolution_cta_requirement('north', color='black') plt.legend() plt.tight_layout() plt.show() plt.savefig("effective_area.png") plt.figure(figsize=(12, 8)) ctaplot.plot_energy_bias(gammas_mc.mc_energy, gammas_mc.reco_energy) plt.show() plt.savefig("energy_bias.png") plt.figure(figsize=(12, 8)) gamma_ps_simu_info = read_simu_info_merged_hdf5(args.dl1file_gammas) emin = gamma_ps_simu_info.energy_range_min.value emax = gamma_ps_simu_info.energy_range_max.value total_number_of_events = gamma_ps_simu_info.num_showers * gamma_ps_simu_info.shower_reuse spectral_index = gamma_ps_simu_info.spectral_index area = (gamma_ps_simu_info.max_scatter_range.value - gamma_ps_simu_info.min_scatter_range.value)**2 * np.pi ctaplot.plot_effective_area_per_energy_power_law( emin, emax, total_number_of_events, spectral_index, gammas_mc.reco_energy[gammas_mc.tel_id == 1], area, label='selected gammas', linestyle='--') ctaplot.plot_effective_area_cta_requirement('north', color='black') plt.ylim([2 * 10**3, 10**6]) plt.legend() plt.tight_layout() plt.show() plt.savefig("effective_area.png") plt.figure(figsize=(12, 8)) plt.plot(energy[0:len(sensitivity_flux)], sensitivity_flux, '-', color='red', markersize=0, label='LST mono') plt.xscale('log') plt.yscale('log') plt.ylabel('$\mathsf{E^2 F \; [erg \, cm^{-2} s^{-1}]}$', fontsize=16) plt.xlabel('E [TeV]') plt.xlim([10**-2, 100]) plt.ylim([10**-14, 10**-9]) plt.tight_layout() plt.savefig('sensitivity.png') plt.figure(figsize=(12, 8)) ctaplot.plot_energy_resolution(gammas_mc.mc_energy, gammas_mc.reco_energy, percentile=68.27, confidence_level=0.95, bias_correction=False) ctaplot.plot_energy_resolution_cta_requirement('north', color='black') plt.xscale('log') plt.ylabel('\u0394 E/E 68\%') plt.xlabel('E [TeV]') plt.xlim([10**-2, 100]) plt.ylim([0.08, 0.48]) plt.tight_layout() plt.savefig('energy_resolution.png', dpi=100)