def fuzzyAsynMemTriangle(name): g = NodeGroup("AsynFuzzyMemTriangle", True); g.addNode(ftriangle,"AsynFuzzyMemTriangle","java"); module = AsynNeuralModule(name+'_AsynFuzzyMemTriangle', g) module.createEncoder("logic/gates/ina", "float", 1) # x module.createEncoder("logic/gates/confa", "float", 1) # alpha module.createEncoder("logic/gates/confb", "float", 1) # beta module.createEncoder("logic/gates/confc", "float", 1) # gamma module.createDecoder("logic/gates/outa", "float", 1) # y return module
def fuzzyAsynMemTriangle(name): g = NodeGroup("AsynFuzzyMemTriangle", True) g.addNode(ftriangle, "AsynFuzzyMemTriangle", "java") module = AsynNeuralModule(name + '_AsynFuzzyMemTriangle', g) module.createEncoder("logic/gates/ina", "float", 1) # x module.createEncoder("logic/gates/confa", "float", 1) # alpha module.createEncoder("logic/gates/confb", "float", 1) # beta module.createEncoder("logic/gates/confc", "float", 1) # gamma module.createDecoder("logic/gates/outa", "float", 1) # y return module
def make(net,name='NeuralModule which implements FuzzyMembership function - Triangular - projectTemplate', independent=True, useQuick=True): finder = "org.hanns.myPackage.fuzzy.membership.impl.Triangular"; # create group with a name g = NodeGroup(name, independent); g.addNode(finder, "temp_FuzzyMemTriangular", "java"); neuron = NeuralModule(name+"_temp_FuzzyMemTriangular", g) neuron.createEncoder("logic/gates/ina", "float",1) # termination = data input x neuron.createEncoder("logic/gates/confa", "float",1) # termination - config input alpha neuron.createEncoder("logic/gates/confb", "float",1) # termination - config input betaa neuron.createEncoder("logic/gates/confc", "float",1) # termination - config input gamma neuron.createDecoder("logic/gates/outa", "float",1) # origin = output of neuron = data output y many=net.add(neuron) # add it into the network