def getCubeValues(self, result, nodeDic, nodeId, query):
        if isinstance(result, cubepy.Cube):
            res = {"dims": [], "values": []}

            _filters = []
            if not query["filters"] is None:
                for dimFilter in query["filters"]:
                    #field = str(dimFilter["field"]).split(".")[0]
                    field = str(dimFilter["field"])
                    if self.hasDim(result, field):
                        indexType = None
                        # is from numpy evaluator
                        if "." in field and field.startswith("Axis"):
                            indexType = "N"
                        else:
                            indexType = self.getIndexType(
                                nodeDic, nodeId, field)

                        if indexType == "S":
                            _filters.append(
                                cubepy.Index(
                                    field,
                                    [str(v) for v in dimFilter["values"]]))
                        else:
                            _filters.append(
                                cubepy.Index(
                                    field,
                                    [int(v) for v in dimFilter["values"]]))

            _filteredResult = result.filter(_filters)
            for col in query["columns"]:
                if col in self.getIndexes(nodeDic[nodeId], result):
                    item = {
                        "field":
                        col,
                        "count":
                        0,
                        "values": [
                            str(v)
                            for v in _filteredResult.axis(col).values.tolist()
                        ]
                        # "values": result.filter(_filters).axis(col).values.tolist()
                    }
                    item["count"] = len(item["values"])
                    res["dims"].append(item)

            resultValues = _filteredResult.sum(keep=query["columns"])
            if isinstance(resultValues, cubepy.Cube):
                res["values"] = resultValues.transpose(
                    query["columns"]).values.reshape(
                        resultValues.size).tolist()
            elif isinstance(resultValues, str):
                res["values"] = [resultValues]
            else:
                res["values"] = resultValues
            return res
        def hierarchize(cube, levels, maps):

            mapArray = nodeDic[maps[0]].result
            coordValues = mapArray.values.copy()
            targetIndexId = nodeDic[levels[1]].result.name

            for pos, level in enumerate(levels):
                if pos > 0:

                    if not maps[pos] is None:
                        mapArrayLevel = nodeDic[maps[pos]].result

                        for ii in range(len(coordValues)):
                            if not coordValues[ii] is None:
                                try:
                                    newVal = mapArrayLevel.filter(
                                        mapArrayLevel.dims[0],
                                        coordValues[ii]).values.item(0)
                                    coordValues[ii] = newVal
                                except Exception as ex:
                                    coordValues[ii] = None
                                    #raise ValueError("Hierarchy not found. Level: " + targetIndexId + ", value: " + coordValues[ii])
                                    pass

            # convert to dataarray
            _coords = []
            for _axis in cube.axes:
                _coord = pd.Index(_axis.values, name=_axis.name)
                _coords.append(_coord)
            dataArray = xr.DataArray(cube.values, _coords)

            # perform aggregate
            dataArray.coords[levels[0]].values = coordValues
            _df = dataArray.to_series()
            _df = _df.groupby(list(dataArray.dims), sort=False).agg(sby)
            _da = _df.to_xarray()
            reindex_dic = dict()
            for dimension in _da.dims:
                if dimension == levels[0]:
                    reindex_dic[dimension] = nodeDic[levels[-1:]
                                                     [0]].result.values
                elif dimension in nodeDic and isinstance(
                        nodeDic[dimension].result, cubepy.Index):
                    reindex_dic[dimension] = nodeDic[dimension].result.values

            _db = _da.reindex(reindex_dic)

            # convert to cube
            _indexes = []
            for _dim in _db.dims:
                _index = cubepy.Index(_dim, _db.coords[_dim].values)
                _indexes.append(_index)
            _cube = cubepy.Cube(_indexes, _db.values)

            return _cube
示例#3
0
def index(name, values):
    """Create a index object.
    name: name for the index
    values: list of values of the index.
    Ex.
        cp.index("items",["Item 1","Item 2","Item 3"])
        cp.index("years",[2016,2017,2018])
    """
    if values is None:
        values = ["Item 1", "Item 2", "Item 3"]
    return cubepy.Index(name, values)
 def createCube(self, nodeId, npArray):
     _dimsNames = [
         self.AXISNAME + str(x) + "." + nodeId for x in range(npArray.ndim)
     ]
     _dimsValues = [
         list(x)
         for x in (range(npArray.shape[y]) for y in range(npArray.ndim))
     ]
     _indexes = [
         cubepy.Index(_dimsNames[x], _dimsValues[x])
         for x in range(len(_dimsNames))
     ]
     _cube = cubepy.Cube(_indexes, npArray)
     return _cube
示例#5
0
def cubeFromNumpy(npArray):
    """ 
    Return a cube object from numpy Array. Generate temporal indexes
    """
    _dimsNames = ["axis " + str(x) for x in range(npArray.ndim)]
    _dimsValues = [
        list(x) for x in (range(npArray.shape[y]) for y in range(npArray.ndim))
    ]
    _indexes = [
        cubepy.Index(_dimsNames[x], _dimsValues[x])
        for x in range(len(_dimsNames))
    ]
    _cube = cube(_indexes, npArray)
    return _cube
    def addToFilter(self, nodeDic, dim, filters):
        if "values" in dim and dim["values"] is not None and len(
                dim["values"]) > 0:
            #field = str(dim["field"]).split(".")[0]
            field = str(dim["field"])
            nodeId = None
            # if len(str(dim["field"]).split("."))>1:
            #     nodeId = str(dim["field"]).split(".")[1]
            indexType = None
            # is from numpy evaluator
            if "." in field and field.startswith("Axis"):
                indexType = "N"
            else:
                indexType = self.getIndexType(nodeDic, nodeId, field)

            if indexType == "S":
                filters.append(
                    cubepy.Index(field,
                                 [str(v["value"]) for v in dim["values"]]))
            else:
                filters.append(
                    cubepy.Index(field,
                                 [int(v["value"]) for v in dim["values"]]))
    def geoUnclusterData(self,
                         result,
                         nodeDic,
                         nodeId,
                         rowIndex,
                         attIndex,
                         latField="latitude",
                         lngField="longitude",
                         geoField="geoField",
                         labelField="labelField",
                         sizeField="sizeField",
                         colorField="colorField",
                         iconField="iconField"):
        latField = "latitude" if latField is None else latField
        lngField = "longitude" if lngField is None else lngField
        geoField = "geoField" if geoField is None else geoField
        labelField = "labelField" if labelField is None else labelField
        sizeField = "sizeField" if sizeField is None else sizeField
        colorField = "colorField" if colorField is None else colorField
        iconField = "iconField" if iconField is None else iconField

        _tmp_for_geo = cubepy.Index('tmp_for_geo', [
            latField, lngField, geoField, labelField, sizeField, colorField,
            iconField
        ])
        _idx = nodeDic[attIndex].result
        rowIndexObj = nodeDic[rowIndex].result
        mapCube = result[_idx == _tmp_for_geo].transpose(
            [rowIndex, "tmp_for_geo"]).values
        res = dict()
        points = []
        pos = 0
        for itemRow in mapCube:
            vo = dict()
            vo["id"] = str(rowIndexObj.values[pos])
            vo["lat"] = itemRow[0]
            vo["lng"] = itemRow[1]
            vo["geoDef"] = itemRow[2]
            vo["labelRes"] = itemRow[3]
            vo["sizeRes"] = itemRow[4]
            vo["colorRes"] = itemRow[5]
            vo["iconRes"] = itemRow[6]
            points.append(vo)
            pos += 1
        res["points"] = points

        return res