def bprop(self):
     grad = ca.reshape(self.grad_array, self.bcast_shape)
     ca.multiply(self.mu.array, grad, self.mu.grad_array)
     ca.exp(self.logvar.array, out=self.logvar.grad_array)
     self.logvar.grad_array -= 1
     self.logvar.grad_array *= 0.5
     self.logvar.grad_array *= grad
示例#2
0
    def bprop(self):
        ca.multiply(self._tmp_batch_centered, self.out_grad, self.x.out_grad)
        tmp = ca.mean(self.x.out_grad, axis=0, keepdims=True)
        ca.multiply(self._tmp_batch_centered, tmp, self.x.out_grad)
        self.x.out_grad *= -1
        self.x.out_grad *= self._tmp_batch_inv_std
        self.x.out_grad *= self._tmp_batch_inv_std

        ca.mean(self.out_grad, axis=0, keepdims=True, out=tmp)
        self.x.out_grad += self.out_grad
        self.x.out_grad -= tmp
        self.x.out_grad *= self._tmp_batch_inv_std

        if self.affine:
            self.x.out_grad *= self.gamma.array
            # Normalized input
            self._tmp_batch_centered *= self._tmp_batch_inv_std
            self._tmp_batch_centered *= self.out_grad
            ca.sum(self._tmp_batch_centered,
                   axis=0,
                   keepdims=True,
                   out=self.gamma.grad_array)
            ca.sum(self.out_grad,
                   axis=0,
                   keepdims=True,
                   out=self.beta.grad_array)
示例#3
0
 def fprop(self):
     if self.phase == 'train':
         # Calculate batch mean
         tmp = ca.mean(self.x.out, axis=0, keepdims=True)
         # Center input
         ca.subtract(self.x.out, tmp, self._tmp_batch_centered)
         # Update running mean
         tmp *= 1 - self.momentum
         self.running_mean *= self.momentum
         self.running_mean += tmp
         # Calculate batch variance
         ca.power(self._tmp_batch_centered, 2, self.out)
         ca.mean(self.out,
                 axis=0,
                 keepdims=True,
                 out=self._tmp_batch_inv_std)
         # Calculate 1 / E([x - E(x)]^2)
         self._tmp_batch_inv_std += self.eps
         ca.sqrt(self._tmp_batch_inv_std, self._tmp_batch_inv_std)
         ca.power(self._tmp_batch_inv_std, -1, self._tmp_batch_inv_std)
         # Normalize input
         ca.multiply(self._tmp_batch_centered, self._tmp_batch_inv_std,
                     self.out)
         # Update running std
         self.running_std *= self.momentum
         ca.multiply(self._tmp_batch_inv_std, 1 - self.momentum, tmp)
         self.running_std += tmp
     elif self.phase == 'test':
         ca.subtract(self.x.out, self.running_mean, self.out)
         self.out *= self.running_std
     else:
         raise ValueError('Invalid phase: %s' % self.phase)
     if self.affine:
         self.out *= self.gamma.array
         self.out += self.beta.array
 def bprop(self):
     ca.multiply(self.mu.out, self.out_grad, self.mu.out_grad)
     self.mu.out_grad *= self.out_grad
     ca.exp(self.log_sigma.out, out=self.log_sigma.out_grad)
     self.log_sigma.out_grad -= 1
     self.log_sigma.out_grad *= 0.5
     self.log_sigma.out_grad *= self.out_grad
示例#5
0
 def bprop(self):
     if self.lhs.bpropable:
         tmp = ca.equal(self.lhs.array, self.array)
         ca.multiply(self.grad_array, tmp, self.lhs.grad_array)
     if self.rhs.bpropable:
         ca.equal(self.rhs.array, self.array, self.rhs.grad_array)
         self.rhs.grad_array *= self.grad_array
示例#6
0
    def bprop(self):
        ca.multiply(self._tmp_batch_centered, self.grad_array,
                    self.x.grad_array)
        tmp = ca.mean(ca.mean(self.x.grad_array, axis=0, keepdims=True),
                      axis=(2, 3), keepdims=True)
        ca.multiply(self._tmp_batch_centered, tmp, self.x.grad_array)
        self.x.grad_array *= -1
        self.x.grad_array *= self._tmp_batch_inv_std
        self.x.grad_array *= self._tmp_batch_inv_std

        tmp = ca.mean(ca.mean(self.grad_array, axis=0, keepdims=True),
                      axis=(2, 3), keepdims=True)
        self.x.grad_array += self.grad_array
        self.x.grad_array -= tmp
        self.x.grad_array *= self._tmp_batch_inv_std

        if self.affine:
            self.x.grad_array *= self.gamma.array
            # Normalized input
            self._tmp_batch_centered *= self._tmp_batch_inv_std
            self._tmp_batch_centered *= self.grad_array
            ca.sum(ca.sum(self._tmp_batch_centered, axis=(2, 3),
                          keepdims=True), axis=0, keepdims=True,
                   out=self.gamma.grad_array)
            ca.sum(ca.sum(self.grad_array, axis=(2, 3), keepdims=True), axis=0,
                   keepdims=True, out=self.beta.grad_array)
示例#7
0
 def bprop(self):
     if self.keepgrads:
         self.x.grad_array = self.grad_array
     else:
         ca.multiply(self.grad_array, self.x.array > self.a_min,
                     self.x.grad_array)
         self.x.grad_array *= self.x.array < self.a_max
 def bprop(self):
     grad = ca.reshape(self.grad_array, self.bcast_shape)
     ca.multiply(self.mu.array, grad, self.mu.grad_array)
     ca.exp(self.logvar.array, out=self.logvar.grad_array)
     self.logvar.grad_array -= 1
     self.logvar.grad_array *= 0.5
     self.logvar.grad_array *= grad
示例#9
0
def test_binary():
    a_np = np.random.normal(size=(5, 5))
    b_np = np.random.normal(size=(5, 5))
    a_ca = ca.array(a_np)
    b_ca = ca.array(b_np)

    c_np = np.add(a_np, b_np)
    c_ca = ca.add(a_ca, b_ca)
    print(np.allclose(c_np, np.array(c_ca)))

    np.add(a_np, b_np, a_np)
    ca.add(a_ca, b_ca, a_ca)
    print(np.allclose(a_np, np.array(a_ca)))

    np.multiply(a_np, b_np, a_np)
    ca.multiply(a_ca, b_ca, a_ca)
    print(np.allclose(a_np, np.array(a_ca)))

    a_np = np.random.normal(size=(5, 5))
    b_np = np.random.normal(size=(5, 5)) > 0
    a_ca = ca.array(a_np)
    b_ca = ca.array(b_np)
    c_np = np.multiply(a_np, b_np)
    c_ca = ca.multiply(a_ca, b_ca)
    print(np.allclose(c_np, np.array(c_ca)))
示例#10
0
 def bprop(self):
     if self.lhs_bprop:
         ca.divide(self.out_grad, self.rhs.out, out=self.lhs.out_grad)
     if self.rhs_bprop:
         ca.multiply(self.out_grad, self.out, out=self.rhs.out_grad)
         self.rhs.out_grad /= self.rhs.out
         ca.negative(self.rhs.out_grad, out=self.rhs.out_grad)
示例#11
0
 def bprop(self):
     if self.lhs.bpropable:
         ca.divide(self.grad_array, self.rhs.array, out=self.lhs.grad_array)
     if self.rhs.bpropable:
         ca.multiply(self.grad_array, self.array, out=self.rhs.grad_array)
         self.rhs.grad_array /= self.rhs.array
         ca.negative(self.rhs.grad_array, out=self.rhs.grad_array)
示例#12
0
 def bprop(self):
     if self.keepgrads:
         self.x.grad_array = self.grad_array
     else:
         ca.multiply(self.grad_array, self.x.array > self.a_min,
                     self.x.grad_array)
         self.x.grad_array *= self.x.array < self.a_max
示例#13
0
 def bprop(self):
     if self.lhs.bpropable:
         tmp = ca.equal(self.lhs.array, self.array)
         ca.multiply(self.grad_array, tmp, self.lhs.grad_array)
     if self.rhs.bpropable:
         ca.equal(self.rhs.array, self.array, self.rhs.grad_array)
         self.rhs.grad_array *= self.grad_array
示例#14
0
 def bprop(self):
     if self.lhs_bprop:
         ca.divide(self.out_grad, self.rhs.out, out=self.lhs.out_grad)
     if self.rhs_bprop:
         ca.multiply(self.out_grad, self.out, out=self.rhs.out_grad)
         self.rhs.out_grad /= self.rhs.out
         ca.negative(self.rhs.out_grad, out=self.rhs.out_grad)
示例#15
0
 def bprop(self):
     if self.lhs_bprop:
         tmp = ca.equal(self.lhs.out, self.out)
         ca.multiply(self.out_grad, tmp, self.lhs.out_grad)
     if self.rhs_bprop:
         ca.equal(self.rhs.out, self.out, self.rhs.out_grad)
         self.rhs.out_grad *= self.out_grad
示例#16
0
 def bprop(self):
     if self.keepgrads:
         self.x.out_grad = self.out_grad
     else:
         ca.multiply(self.out_grad, self.x.out > self.a_min,
                     self.x.out_grad)
         self.x.out_grad *= self.x.out < self.a_max
示例#17
0
    def bprop(self):
        ca.multiply(self._tmp_batch_centered, self.out_grad, self.x.out_grad)
        tmp = ca.mean(ca.mean(self.x.out_grad, axis=0, keepdims=True),
                      axis=(2, 3), keepdims=True)
        ca.multiply(self._tmp_batch_centered, tmp, self.x.out_grad)
        self.x.out_grad *= -1
        self.x.out_grad *= self._tmp_batch_inv_std
        self.x.out_grad *= self._tmp_batch_inv_std

        tmp = ca.mean(ca.mean(self.out_grad, axis=0, keepdims=True),
                      axis=(2, 3), keepdims=True)
        self.x.out_grad += self.out_grad
        self.x.out_grad -= tmp
        self.x.out_grad *= self._tmp_batch_inv_std

        if self.affine:
            self.x.out_grad *= self.gamma.array
            # Normalized input
            self._tmp_batch_centered *= self._tmp_batch_inv_std
            self._tmp_batch_centered *= self.out_grad
            ca.sum(ca.sum(self._tmp_batch_centered, axis=(2, 3),
                          keepdims=True), axis=0, keepdims=True,
                   out=self.gamma.grad_array)
            ca.sum(ca.sum(self.out_grad, axis=(2, 3), keepdims=True), axis=0,
                   keepdims=True, out=self.beta.grad_array)
示例#18
0
 def bprop(self):
     if self.lhs_bprop:
         tmp = ca.equal(self.lhs.out, self.out)
         ca.multiply(self.out_grad, tmp, self.lhs.out_grad)
     if self.rhs_bprop:
         ca.equal(self.rhs.out, self.out, self.rhs.out_grad)
         self.rhs.out_grad *= self.out_grad
示例#19
0
 def fprop(self):
     if self.phase == 'train':
         # Calculate batch mean
         tmp = ca.mean(self.x.out, axis=0, keepdims=True)
         # Center input
         ca.subtract(self.x.out, tmp, self._tmp_batch_centered)
         # Update running mean
         tmp *= 1 - self.momentum
         self.running_mean *= self.momentum
         self.running_mean += tmp
         # Calculate batch variance
         ca.power(self._tmp_batch_centered, 2, self.out)
         ca.mean(self.out, axis=0, keepdims=True,
                 out=self._tmp_batch_inv_std)
         # Calculate 1 / E([x - E(x)]^2)
         self._tmp_batch_inv_std += self.eps
         ca.sqrt(self._tmp_batch_inv_std, self._tmp_batch_inv_std)
         ca.power(self._tmp_batch_inv_std, -1, self._tmp_batch_inv_std)
         # Normalize input
         ca.multiply(self._tmp_batch_centered, self._tmp_batch_inv_std,
                     self.out)
         # Update running std
         self.running_std *= self.momentum
         ca.multiply(self._tmp_batch_inv_std, 1-self.momentum, tmp)
         self.running_std += tmp
     elif self.phase == 'test':
         ca.subtract(self.x.out, self.running_mean, self.out)
         self.out *= self.running_std
     else:
         raise ValueError('Invalid phase: %s' % self.phase)
     if self.affine:
         self.out *= self.gamma.array
         self.out += self.beta.array
示例#20
0
 def bprop(self):
     if self.keepgrads:
         self.x.out_grad = self.out_grad
     else:
         ca.multiply(self.out_grad, self.x.out > self.a_min,
                     self.x.out_grad)
         self.x.out_grad *= self.x.out < self.a_max
示例#21
0
def test_binary():
    a_np = np.random.normal(size=(5, 5))
    b_np = np.random.normal(size=(5, 5))
    a_ca = ca.array(a_np)
    b_ca = ca.array(b_np)

    c_np = np.add(a_np, b_np)
    c_ca = ca.add(a_ca, b_ca)
    print(np.allclose(c_np, np.array(c_ca)))

    np.add(a_np, b_np, a_np)
    ca.add(a_ca, b_ca, a_ca)
    print(np.allclose(a_np, np.array(a_ca)))

    np.multiply(a_np, b_np, a_np)
    ca.multiply(a_ca, b_ca, a_ca)
    print(np.allclose(a_np, np.array(a_ca)))

    a_np = np.random.normal(size=(5, 5))
    b_np = np.random.normal(size=(5, 5)) > 0
    a_ca = ca.array(a_np)
    b_ca = ca.array(b_np)
    c_np = np.multiply(a_np, b_np)
    c_ca = ca.multiply(a_ca, b_ca)
    print(np.allclose(c_np, np.array(c_ca)))
示例#22
0
 def bprop(self):
     if self.lhs.bpropable:
         ca.divide(self.grad_array, self.rhs.array, out=self.lhs.grad_array)
     if self.rhs.bpropable:
         ca.multiply(self.grad_array, self.array, out=self.rhs.grad_array)
         self.rhs.grad_array /= self.rhs.array
         ca.negative(self.rhs.grad_array, out=self.rhs.grad_array)
示例#23
0
 def fprop(self):
     if self.phase == "train":
         ca.less(self.dropout, ca.random.uniform(size=self.mask_shape), self._tmp_mask)
         ca.multiply(self.x.out, self._tmp_mask, self.out)
     elif self.phase == "test":
         ca.multiply(self.x.out, 1.0 - self.dropout, self.out)
     else:
         raise ValueError("Invalid phase: %s" % self.phase)
示例#24
0
文件: dropout.py 项目: obinsc/deeppy
 def fprop(self):
     if self.phase == 'train':
         ca.less(self.dropout, ca.random.uniform(size=self.mask_shape),
                 self._tmp_mask)
         ca.multiply(self.x.out, self._tmp_mask, self.out)
     elif self.phase == 'test':
         ca.multiply(self.x.out, 1.0 - self.dropout, self.out)
     else:
         raise ValueError('Invalid phase: %s' % self.phase)
示例#25
0
 def fprop(self):
     if self.phase == 'train':
         ca.less(self.dropout, ca.random.uniform(size=self.mask_shape),
                 self._tmp_mask)
         ca.multiply(self.x.array, self._tmp_mask, self.array)
     elif self.phase == 'test':
         ca.multiply(self.x.array, 1.0-self.dropout, self.array)
     else:
         raise ValueError('Invalid phase: %s' % self.phase)
示例#26
0
 def fprop(self):
     # -log(1 - pred)*(1 - target) - log(pred)*target
     tmp1 = 1 - self.pred.out
     tmp1 += self.eps
     ca.log(tmp1, tmp1)
     tmp2 = 1 - self.target.out
     ca.multiply(tmp1, tmp2, tmp1)
     ca.add(self.pred.out, self.eps, tmp2)
     ca.log(tmp2, tmp2)
     tmp2 *= self.target.out
     ca.add(tmp1, tmp2, tmp1)
     tmp1 *= -1
     ca.sum(tmp1, axis=1, keepdims=True, out=self.out)
示例#27
0
 def fprop(self):
     # -log(1 - pred)*(1 - target) - log(pred)*target
     tmp1 = 1 - self.pred.array
     tmp1 += self.eps
     ca.log(tmp1, tmp1)
     tmp2 = 1 - self.target.array
     ca.multiply(tmp1, tmp2, tmp1)
     ca.add(self.pred.array, self.eps, tmp2)
     ca.log(tmp2, tmp2)
     tmp2 *= self.target.array
     ca.add(tmp1, tmp2, tmp1)
     tmp1 *= -1
     ca.sum(tmp1, axis=1, out=self.array)
示例#28
0
文件: loss.py 项目: EricSchles/deeppy
 def fprop(self):
     # -log(1 - pred)*(1 - target) - log(pred)*target
     tmp1 = 1 - self.pred.array
     tmp1 += self.eps
     ca.log(tmp1, tmp1)
     tmp2 = 1 - self.target.array
     ca.multiply(tmp1, tmp2, tmp1)
     ca.add(self.pred.array, self.eps, tmp2)
     ca.log(tmp2, tmp2)
     tmp2 *= self.target.array
     ca.add(tmp1, tmp2, tmp1)
     tmp1 *= -1
     ca.sum(tmp1, axis=1, out=self.array)
示例#29
0
文件: sgd.py 项目: Laurawly/ECS271
def matrix_factorization(R, P, Q, mask, steps=200000000, alpha=0.00005, beta=0.02):
    Q = ca.transpose(Q)
    for step in xrange(steps):
 	E = ca.subtract(R, ca.multiply(ca.dot(P,Q), mask))

	rmse = ca.sqrt(ca.sum(ca.power(E,2)) / ca.sum(mask))
	rmse = np.array(rmse)[0]

 	print 'step: %i RMSE: %f' % (step, rmse)
        if rmse < 0.65:
            break
	P = ca.add(ca.multiply(P,(1-alpha*beta)),ca.multiply(ca.dot(E,ca.transpose(Q)), 2*alpha))
	Q = ca.add(ca.multiply(Q,(1-alpha*beta)),ca.multiply(ca.dot(ca.transpose(P),E),2*alpha))

    return P, Q
示例#30
0
    def fprop(self):
        if self.phase == 'train':
            # Calculate batch mean
            tmp = ca.mean(ca.mean(self.x.array, axis=0, keepdims=True),
                          axis=(2, 3), keepdims=True)
            # Center input
            ca.subtract(self.x.array, tmp, self._tmp_batch_centered)
            # Update running mean
            tmp *= 1 - self.momentum
            self.running_mean *= self.momentum
            self.running_mean += tmp
            # Calculate batch variance
            ca.power(self._tmp_batch_centered, 2, self.array)
            ca.mean(ca.mean(self.array, axis=0, keepdims=True), axis=(2, 3),
                    keepdims=True, out=self._tmp_batch_inv_std)
            # Calculate 1 / E([x - E(x)]^2)
            self._tmp_batch_inv_std += self.eps
            ca.sqrt(self._tmp_batch_inv_std, self._tmp_batch_inv_std)
            ca.power(self._tmp_batch_inv_std, -1, self._tmp_batch_inv_std)
            # Normalize input
            ca.multiply(self._tmp_batch_centered, self._tmp_batch_inv_std,
                        self.array)
            # Update running std
            self.running_std *= self.momentum
            ca.multiply(self._tmp_batch_inv_std, 1-self.momentum, tmp)
            self.running_std += tmp

            if self.noise_std > 0.0:
                noise = ca.random.normal(scale=self.noise_std,
                                         size=self.shape)
                ca.add(self.array, noise, self.array)

        elif self.phase == 'test':
            ca.subtract(self.x.array, self.running_mean, self.array)
            self.array *= self.running_std
        else:
            raise ValueError('Invalid phase: %s' % self.phase)
        if self.affine:
            self.array *= self.gamma.array
            self.array += self.beta.array
示例#31
0
    def bprop(self):
        ca.multiply(self._tmp_batch_centered, self.grad_array,
                    self.x.grad_array)
        tmp = ca.mean(self.x.grad_array, axis=0, keepdims=True)
        ca.multiply(self._tmp_batch_centered, tmp, self.x.grad_array)
        self.x.grad_array *= -1
        self.x.grad_array *= self._tmp_batch_inv_std
        self.x.grad_array *= self._tmp_batch_inv_std

        ca.mean(self.grad_array, axis=0, keepdims=True, out=tmp)
        self.x.grad_array += self.grad_array
        self.x.grad_array -= tmp
        self.x.grad_array *= self._tmp_batch_inv_std

        if self.affine:
            self.x.grad_array *= self.gamma.array
            # Normalized input
            self._tmp_batch_centered *= self._tmp_batch_inv_std
            self._tmp_batch_centered *= self.grad_array
            ca.sum(self._tmp_batch_centered, axis=0, keepdims=True,
                   out=self.gamma.grad_array)
            ca.sum(self.grad_array, axis=0, keepdims=True,
                   out=self.beta.grad_array)
示例#32
0
def matrix_factorization(R,
                         P,
                         Q,
                         mask,
                         steps=200000000,
                         alpha=0.00005,
                         beta=0.02):
    Q = ca.transpose(Q)
    for step in xrange(steps):
        E = ca.subtract(R, ca.multiply(ca.dot(P, Q), mask))

        rmse = ca.sqrt(ca.sum(ca.power(E, 2)) / ca.sum(mask))
        rmse = np.array(rmse)[0]

        print 'step: %i RMSE: %f' % (step, rmse)
        if rmse < 0.65:
            break
        P = ca.add(ca.multiply(P, (1 - alpha * beta)),
                   ca.multiply(ca.dot(E, ca.transpose(Q)), 2 * alpha))
        Q = ca.add(ca.multiply(Q, (1 - alpha * beta)),
                   ca.multiply(ca.dot(ca.transpose(P), E), 2 * alpha))

    return P, Q
示例#33
0
 def bprop(self):
     if self.lhs_bprop:
         ca.multiply(self.out_grad, self.rhs.out, out=self.lhs.out_grad)
     if self.rhs_bprop:
         ca.multiply(self.out_grad, self.lhs.out, out=self.rhs.out_grad)
示例#34
0
 def fprop(self):
     ca.multiply(self.lhs.out, self.rhs.out, out=self.out)
示例#35
0
 def bprop(self):
     ca.nnet.relu_d(self.x.out, self.x.out_grad)
     self.x.out_grad *= 2.0
     self.x.out_grad -= 1.0
     ca.multiply(self.x.out_grad, self.out_grad, out=self.x.out_grad)
示例#36
0
 def bprop(self):
     if self.lhs.bpropable:
         ca.multiply(self.grad_array, self.rhs.array, self.lhs.grad_array)
     if self.rhs.bpropable:
         ca.multiply(self.grad_array, self.lhs.array, self.rhs.grad_array)
示例#37
0
文件: dropout.py 项目: obinsc/deeppy
 def bprop(self):
     ca.multiply(self.out_grad, self._tmp_mask, self.x.out_grad)
示例#38
0
 def bprop(self):
     ca.multiply(self.out_grad, self._tmp_mask, self.x.out_grad)
示例#39
0
 def bprop(self):
     if self.lhs.bpropable:
         ca.multiply(self.grad_array, self.rhs.array, self.lhs.grad_array)
     if self.rhs.bpropable:
         ca.multiply(self.grad_array, self.lhs.array, self.rhs.grad_array)
示例#40
0
 def fprop(self):
     ca.multiply(self.lhs.array, self.rhs.array, out=self.array)
示例#41
0
 def bprop(self):
     ca.nnet.relu_d(self.x.array, self.x.grad_array)
     self.x.grad_array *= 2.0
     self.x.grad_array -= 1.0
     ca.multiply(self.x.grad_array, self.grad_array, out=self.x.grad_array)
示例#42
0
 def bprop(self):
     # y_i * (y_grad_i - sum(y_grad * y))
     ca.multiply(self.array, self.grad_array, self.x.grad_array)
     tmp1 = ca.sum(self.x.grad_array, axis=1, keepdims=True)
     ca.subtract(self.grad_array, tmp1, self.x.grad_array)
     self.x.grad_array *= self.array
示例#43
0
 def bprop(self):
     ca.nnet.relu_d(self.x.out, self.x.out_grad)
     self.x.out_grad *= 2.0
     self.x.out_grad -= 1.0
     ca.multiply(self.x.out_grad, self.out_grad, out=self.x.out_grad)
 def bprop(self):
     ca.multiply(self.grad_array, self.scale, self.x.grad_array)
示例#45
0
 def bprop(self):
     if self.lhs_bprop:
         ca.multiply(self.out_grad, self.rhs.out, out=self.lhs.out_grad)
     if self.rhs_bprop:
         ca.multiply(self.out_grad, self.lhs.out, out=self.rhs.out_grad)
示例#46
0
 def fprop(self):
     ca.multiply(self.lhs.out, self.rhs.out, out=self.out)
示例#47
0
 def bprop(self):
     ca.multiply(self.mu.array, self.grad_array, self.mu.grad_array)
     ca.exp(self.log_sigma.array, out=self.log_sigma.grad_array)
     self.log_sigma.grad_array -= 1
     self.log_sigma.grad_array *= 0.5
     self.log_sigma.grad_array *= self.grad_array
示例#48
0
 def bprop(self):
     ca.multiply(self.grad_array, self._tmp_mask, self.x.grad_array)
 def bprop(self):
     ca.multiply(self.mu.array, self.grad_array, self.mu.grad_array)
     ca.exp(self.log_sigma.array, out=self.log_sigma.grad_array)
     self.log_sigma.grad_array -= 1
     self.log_sigma.grad_array *= 0.5
     self.log_sigma.grad_array *= self.grad_array
示例#50
0
 def bprop(self):
     ca.multiply(self.grad_array, self._tmp_mask, self.x.grad_array)
示例#51
0
文件: test.py 项目: rufrozen/cudarray
def test_multiply():
    a_np = np.ones((5, 5))
    b_np = np.arange(5)
    a_ca = ca.array(a_np)
    b_ca = ca.array(b_np)
    c_ca = ca.multiply(a_ca, b_ca, a_ca)
    c_np = np.multiply(a_np, b_np, a_np)
    print(np.allclose(c_np, np.array(c_ca)))

    a_np = np.ones((3, 3))
    b_np = np.arange(3)
    a_ca = ca.array(a_np)
    b_ca = ca.array(b_np)
    c_np = np.multiply(a_np, b_np)
    c_ca = ca.multiply(a_ca, b_ca)
    print(np.allclose(c_np, np.array(c_ca)))

    a_np = np.ones((3, 3))
    b_np = np.arange(3).reshape(1, 3)
    a_ca = ca.array(a_np)
    b_ca = ca.array(b_np)
    c_np = np.multiply(a_np, b_np)
    c_ca = ca.multiply(a_ca, b_ca)
    print(np.allclose(c_np, np.array(c_ca)))

    a_np = np.ones((3, 3))
    b_np = np.arange(3).reshape(3, 1)
    a_ca = ca.array(a_np)
    b_ca = ca.array(b_np)

    c_np = np.multiply(a_np, b_np)
    c_ca = ca.multiply(a_ca, b_ca)
    print(np.allclose(c_np, np.array(c_ca)))

    a_np = np.ones((3, 3, 4))
    b_np = np.arange(3).reshape(3, 1, 1)
    a_ca = ca.array(a_np)
    b_ca = ca.array(b_np)
    c_np = np.multiply(a_np, b_np)
    c_ca = ca.multiply(a_ca, b_ca)
    print(np.allclose(c_np, np.array(c_ca)))

    a_np = np.ones((3, 3, 4))
    b_np = np.arange(4)
    a_ca = ca.array(a_np)
    b_ca = ca.array(b_np)
    c_np = np.multiply(a_np, b_np)
    c_ca = ca.multiply(a_ca, b_ca)
    print(np.allclose(c_np, np.array(c_ca)))

    a_np = np.arange(3)
    b_np = np.ones((3, 3))
    a_ca = ca.array(a_np)
    b_ca = ca.array(b_np)
    c_np = np.multiply(a_np, b_np)
    c_ca = ca.multiply(a_ca, b_ca)
    print(np.allclose(c_np, np.array(c_ca)))

    a_np = np.arange(4)
    b_np = np.ones((3, 3, 4))
    a_ca = ca.array(a_np)
    b_ca = ca.array(b_np)
    c_np = np.multiply(a_np, b_np)
    c_ca = ca.multiply(a_ca, b_ca)
    print(np.allclose(c_np, np.array(c_ca)))

    a_np = np.ones((2, 7, 3, 5, 6))
    b_np = np.arange(3).reshape(1, 1, 3, 1, 1)
    a_ca = ca.array(a_np)
    b_ca = ca.array(b_np)
    c_np = np.multiply(a_np, b_np)
    c_ca = ca.multiply(a_ca, b_ca)
    print(np.allclose(c_np, np.array(c_ca)))

    a_np = np.ones((3, 3, 4))
    b_np = np.ones((3, 1, 4))
    a_ca = ca.array(a_np)
    b_ca = ca.array(b_np)
    c_np = np.multiply(a_np, b_np)
    c_ca = ca.multiply(a_ca, b_ca)
    print(np.allclose(c_np, np.array(c_ca)))

    a = np.random.normal(size=(5, 5))
    a_ca = ca.array(a)
    c_np = np.multiply(a, 3)
    c_ca = ca.multiply(a_ca, 3)
    print(np.allclose(c_np, np.array(c_ca)))

    c_np = np.multiply(a, 3, a)
    c_ca = ca.multiply(a_ca, 3, a_ca)
    print(np.allclose(c_np, np.array(c_ca)))

    a = np.random.normal(size=(5, 5))
    a_ca = ca.array(a)
    b = np.random.normal(size=(5, 5))
    b_ca = ca.array(b)

    c_np = np.multiply(a, b, a)
    c_ca = ca.multiply(a_ca, b_ca, a_ca)
    print(np.allclose(c_np, np.array(c_ca)))

    c_np = np.multiply(a, b)
    c_ca = ca.multiply(a_ca, b_ca)
    print(np.allclose(c_np, np.array(c_ca)))
示例#52
0
def test_multiply():
    a_np = np.ones((5, 5))
    b_np = np.arange(5)
    a_ca = ca.array(a_np)
    b_ca = ca.array(b_np)
    c_ca = ca.multiply(a_ca, b_ca, a_ca)
    c_np = np.multiply(a_np, b_np, a_np)
    print(np.allclose(c_np, np.array(c_ca)))

    a_np = np.ones((3, 3))
    b_np = np.arange(3)
    a_ca = ca.array(a_np)
    b_ca = ca.array(b_np)
    c_np = np.multiply(a_np, b_np)
    c_ca = ca.multiply(a_ca, b_ca)
    print(np.allclose(c_np, np.array(c_ca)))

    a_np = np.ones((3, 3))
    b_np = np.arange(3).reshape(1, 3)
    a_ca = ca.array(a_np)
    b_ca = ca.array(b_np)
    c_np = np.multiply(a_np, b_np)
    c_ca = ca.multiply(a_ca, b_ca)
    print(np.allclose(c_np, np.array(c_ca)))

    a_np = np.ones((3, 3))
    b_np = np.arange(3).reshape(3, 1)
    a_ca = ca.array(a_np)
    b_ca = ca.array(b_np)

    c_np = np.multiply(a_np, b_np)
    c_ca = ca.multiply(a_ca, b_ca)
    print(np.allclose(c_np, np.array(c_ca)))

    a_np = np.ones((3, 3, 4))
    b_np = np.arange(3).reshape(3, 1, 1)
    a_ca = ca.array(a_np)
    b_ca = ca.array(b_np)
    c_np = np.multiply(a_np, b_np)
    c_ca = ca.multiply(a_ca, b_ca)
    print(np.allclose(c_np, np.array(c_ca)))

    a_np = np.ones((3, 3, 4))
    b_np = np.arange(4)
    a_ca = ca.array(a_np)
    b_ca = ca.array(b_np)
    c_np = np.multiply(a_np, b_np)
    c_ca = ca.multiply(a_ca, b_ca)
    print(np.allclose(c_np, np.array(c_ca)))

    a_np = np.arange(3)
    b_np = np.ones((3, 3))
    a_ca = ca.array(a_np)
    b_ca = ca.array(b_np)
    c_np = np.multiply(a_np, b_np)
    c_ca = ca.multiply(a_ca, b_ca)
    print(np.allclose(c_np, np.array(c_ca)))

    a_np = np.arange(4)
    b_np = np.ones((3, 3, 4))
    a_ca = ca.array(a_np)
    b_ca = ca.array(b_np)
    c_np = np.multiply(a_np, b_np)
    c_ca = ca.multiply(a_ca, b_ca)
    print(np.allclose(c_np, np.array(c_ca)))

    a_np = np.ones((2, 7, 3, 5, 6))
    b_np = np.arange(3).reshape(1, 1, 3, 1, 1)
    a_ca = ca.array(a_np)
    b_ca = ca.array(b_np)
    c_np = np.multiply(a_np, b_np)
    c_ca = ca.multiply(a_ca, b_ca)
    print(np.allclose(c_np, np.array(c_ca)))

    a_np = np.ones((3, 3, 4))
    b_np = np.ones((3, 1, 4))
    a_ca = ca.array(a_np)
    b_ca = ca.array(b_np)
    c_np = np.multiply(a_np, b_np)
    c_ca = ca.multiply(a_ca, b_ca)
    print(np.allclose(c_np, np.array(c_ca)))

    a = np.random.normal(size=(5, 5))
    a_ca = ca.array(a)
    c_np = np.multiply(a, 3)
    c_ca = ca.multiply(a_ca, 3)
    print(np.allclose(c_np, np.array(c_ca)))

    c_np = np.multiply(a, 3, a)
    c_ca = ca.multiply(a_ca, 3, a_ca)
    print(np.allclose(c_np, np.array(c_ca)))

    a = np.random.normal(size=(5, 5))
    a_ca = ca.array(a)
    b = np.random.normal(size=(5, 5))
    b_ca = ca.array(b)

    c_np = np.multiply(a, b, a)
    c_ca = ca.multiply(a_ca, b_ca, a_ca)
    print(np.allclose(c_np, np.array(c_ca)))

    c_np = np.multiply(a, b)
    c_ca = ca.multiply(a_ca, b_ca)
    print(np.allclose(c_np, np.array(c_ca)))
示例#53
0
 def bprop(self):
     ca.nnet.relu_d(self.x.array, self.x.grad_array)
     self.x.grad_array *= 2.0
     self.x.grad_array -= 1.0
     ca.multiply(self.x.grad_array, self.grad_array, out=self.x.grad_array)
示例#54
0
 def bprop(self):
     ca.multiply(self.mu.out, self.out_grad, self.mu.out_grad)
     ca.exp(self.log_sigma.out, out=self.log_sigma.out_grad)
     self.log_sigma.out_grad -= 1
     self.log_sigma.out_grad *= 0.5
     self.log_sigma.out_grad *= self.out_grad
示例#55
0
 def fprop(self):
     ca.multiply(self.lhs.array, self.rhs.array, out=self.array)