def plot_graph_wrapper(df, title='', xTitle='', yTitle='', filename='output.html'): """Cufflink offline plot for easy viewing""" cf.set_config_file(offline=True, world_readable=True, theme='ggplot') cf_output = df.iplot(kind='scatter', title=title, xTitle=xTitle, online=False, asFigure=True) py.offline.plot(cf_output, filename=filename)
def interactive_charts(df: pd.DataFrame, x: str, y: str, kind: str): # https://github.com/santosjorge/cufflinks/blob/master/Cufflinks%20Tutorial%20-%20Pandas%20Like.ipynb import plotly.offline import cufflinks as cf cf.go_offline() cf.set_config_file(offline=False, world_readable=True) df.iplot(x=x, y=y, kind=kind)
def get_data_view(limit): data = pd.read_csv('forbes.csv') regions_available = list(data.values) cf.set_config_file(offline=True, theme="ggplot") py.offline.init_notebook_mode() N = pd.read_csv('forbes.csv', encoding="utf8", keep_default_na=False, na_values='na_rep') N.head() # Count crime numbers in each neighborhood limit = 100 data5 = N.iloc[0:limit, :] print(data5) input() # disdata5 = pd.DataFrame(data['行业'].value_counts()) # disdata5.reset_index(inplace=True) # disdata5.rename( # columns={'index': '分类', 'PdDistrict': 'Count'}, inplace=True) # print(disdata5) # input() limit = 20 data4 = N.iloc[0:limit, :] print(data4) input()
def IV_final_2020(): Locality_available = list(df.Year.dropna().unique()) cf.set_config_file(offline=True, theme="ggplot") py.offline.init_notebook_mode() data_str = df.to_html() return render_template('results3.html', the_res = data_str, the_select_region=Locality_available)
def area_situation(): Year_available = list(df.Year.dropna().unique()) cf.set_config_file(offline=True, theme="ggplot") py.offline.init_notebook_mode() data_str = df[:30].to_html() return render_template('area_situation.html', the_res = data_str, the_select_Year=Year_available)
def zm_qwm(): df4 = pd.read_csv('G.csv', encoding='gbk') zb_available = list(df4.指标.dropna().unique()) cf.set_config_file(offline=True, theme="ggplot") py.offline.init_notebook_mode() data_str = df4.to_html() return render_template('zm_qwm.html', the_res=data_str, the_select_year=zb_available)
def ge_data(): df2 = pd.read_csv('F.csv', encoding='gbk') year_available = list(df2.年份.dropna().unique()) cf.set_config_file(offline=True, theme="ggplot") py.offline.init_notebook_mode() data_str = df2.to_html() return render_template('ge_data.html', the_res=data_str, the_select_year=year_available)
def histog(data): cf.set_config_file(offline=False, world_readable=True, theme='pearl') df = pd.DataFrame({'Distances': data}) df.head(2) df.iplot(kind='histogram', subplots=True, shape=(3, 1), filename='cufflinks/histogram-subplots')
def zd_jr(): df = pd.read_csv('junfeizhanbi.csv', encoding='gbk') jf_available = ['高收入国家','低收入国家'] # 列表下拉值赋予给regions_available cf.set_config_file(offline=True, theme="ggplot") py.offline.init_notebook_mode() data_str = df[:40].to_html() return render_template('zd_jf.html', the_select_jf=jf_available, the_res = data_str)
def plot_timeseries_with_bound(df, val_col, bound_col, true_col, xTitle='', yTitle='', title='', filename='LSTM_output_bounds.html'): cf.set_config_file(offline=True, world_readable=True, theme='ggplot') # cf_output = df.iplot(kind='scatter', title=title, xTitle=xTitle, # online=False, asFigure=True) upper_bound = go.Scatter( name='Upper Bound', #x=df['Time'], y=df[val_col] + df[bound_col], mode='lines', marker=dict(color="444"), line=dict(width=0), fillcolor='rgba(68, 68, 68, 0.3)', fill='tonexty') trace = go.Scatter( name='Measurement', #x=df['Time'], y=df[val_col], mode='lines', line=dict(color='rgb(31, 119, 180)'), fillcolor='rgba(68, 68, 68, 0.3)', fill='tonexty') lower_bound = go.Scatter( name='Lower Bound', #x=df['Time'], y=df[val_col] - df[bound_col], marker=dict(color="444"), line=dict(width=0), mode='lines') true_line = go.Scatter( name='Actual', #x=df['Time'], y=df[true_col], mode='lines', line=dict(color='rgb(180, 119, 180)'), fillcolor='rgba(68, 68, 68, 0.3)', fill='lines') # Trace order can be important # with continuous error bars data = [lower_bound, trace, upper_bound, true_line] layout = go.Layout(yaxis=dict(title=yTitle), title=title, showlegend=True) fig = go.Figure(data=data, layout=layout) py.offline.plot(fig, filename=filename)
def map1() -> 'html': Year_available = list(df.Year.dropna().unique()) cf.set_config_file(offline=True, theme="ggplot") py.offline.init_notebook_mode() the_Year = request.form["the_Year_selected"] dfs = df.query("Year=='{}'".format(the_Year)) State = list(dfs['State'].unique()) State.remove('United States') p = [] z = [] for st in State: df4 = dfs[dfs.State == st] z.append(sum(df4['Death_Rate'])) p.append(sum(df4['Population'])) fig = go.Figure(data=go.Choropleth( locations=State, # Spatial coordinates z=z, # Data to be color-coded locationmode='USA-states', # set of locations match entries in `locations` colorscale='Reds', colorbar_title="人数", )) fig.update_layout( title_text='1999-2017年美国各州的药物中毒人数地图可视化', geo_scope='usa', # limite map scope to USA ) py.offline.plot(fig, filename="us.html", auto_open=False) with open("us.html", encoding="utf8", mode="r") as f: plot_all2 = "".join(f.readlines()) fig = go.Figure(data=go.Choropleth( locations=State, # Spatial coordinates z=p, # Data to be color-coded locationmode='USA-states', # set of locations match entries in `locations` colorscale='Reds', colorbar_title="人数", )) fig.update_layout( title_text='1999-2017年美国各州的人数地图可视化', geo_scope='usa', # limite map scope to USA ) py.offline.plot(fig, filename="us.html", auto_open=False) with open("us.html", encoding="utf8", mode="r") as f: plot_all3 = "".join(f.readlines()) data_str = dfs[:30].to_html() return render_template('area_situation.html', the_plot_all2 = plot_all2, the_plot_all3 = plot_all3, the_res = data_str, the_select_Year=Year_available, )
def hr(): df = pd.read_csv('hurun.csv', encoding='utf-8', delimiter="\t") # df = df.set_index('Index') regions_available = list(df.region.dropna().unique()) cf.set_config_file(offline=True, theme="ggplot") py.offline.init_notebook_mode() data_str = df.to_html(classes='table align-items-center table-flush') return render_template('layouts/default.html', content=render_template('pyecharts/index.html', the_res=data_str))
def show_graph(self): cf.set_config_file(sharing='public', theme='pearl', offline=False) cf.go_offline init_notebook_mode(connected=True) df = pd.DataFrame({'Activity': self.graphActivityData}, index=self.graphTimeData) #df.head() print(df) print("bfr") df.plot() print("afr")
def trend_situation(): Race_available = list(df.Race.dropna().unique()) # 列表下拉值赋予给regions_available cf.set_config_file(offline=True, theme="ggplot") py.offline.init_notebook_mode() data_str = df[:30].to_html() def line_markline2() -> Line: df = pd.read_csv('Mortality_States.csv') time = list(df['Year'].unique()) times = [] for t in list(time): times.append(str(t)) Race1 = list(df['Race'].unique()) r2 = [] for r in Race1: df5 = df[df.Race == r] r1 = [] r2.append(r1) for t in time: df6 = df5[df5.Year == t] r1.append(int(sum(df6['Death_Rate']))) c = ( Line() .add_xaxis(times) .add_yaxis( "All Races-All Origins", r2[0], markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="average")]), ) .add_yaxis( "Hispanic", r2[1], markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="average")]), ) .add_yaxis( "Non-Hispanic Black", r2[2], markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="average")]), ) .add_yaxis( "Non-Hispanic White", r2[3], markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="average")]), ) .set_global_opts(title_opts=opts.TitleOpts(title="种族药物中毒死亡率")) ) return c line_markline2().render() with open("render.html", encoding="utf8", mode="r") as f: plot_all2 = "".join(f.readlines()) return render_template('trend_situation.html', the_plot_all2=plot_all2, the_res = data_str, the_select_Race=Race_available)
def __init__(self, upid): cf.set_config_file(world_readable=True, theme='henanigans', offline=True) cf.go_offline() self.mongo_persist = MongoPersist() self.upid = upid data_dict = self.mongo_persist.read("up_video_list", {"mid": upid}) self.df_data = pd.DataFrame(data_dict) self.df_data['created'] = pd.to_datetime(self.df_data['created'], unit='s')
def __init__(self, db): self.db = db if isinstance(self.db, dict): self.materials = RecursiveDict() self.compositions = RecursiveDict() else: import plotly.plotly as py import cufflinks cufflinks.set_config_file(world_readable=True, theme='pearl') opts = bson.CodecOptions(document_class=bson.SON) self.contributions = self.db.contributions.with_options(codec_options=opts) self.materials = self.db.materials.with_options(codec_options=opts) self.compositions = self.db.compositions.with_options(codec_options=opts)
def plot_chart(path_to_png, path_to_log_list): print(path_to_png[0:-4] + ".html") output_file(path_to_png[0:-4] + ".html") TOOLS = 'pan,box_zoom,wheel_zoom,save,hover,reset,resize' p = figure(title="TrainLoss(smoothed) vs NumIters", x_axis_label='NumIters') fig, ax1 = plt.subplots() cf.set_config_file(offline=False, world_readable=True, theme='ggplot') for path_to_log in path_to_log_list: os.system('%s %s ./ ' % (get_log_parsing_script(), path_to_log)) data_file = get_data_file(6, path_to_log) pddata = pd.read_csv(data_file) standard = ['NumIters', 'Seconds', 'LearningRate'] labels = [label for label in pddata if label not in standard] sp = 500 if len(pddata['NumIters']) > 2000 else 5 skip = 5 if len(pddata['NumIters']) > 2000 else 0 ylims = [100, -100] data = [] for label, i in zip(labels, range(len(labels))): Y = pddata[label].ewm(span=sp, adjust=True).mean() plt.plot(pddata["NumIters"], Y, alpha=0.4) ylims[0] = min(ylims[0], Y[skip:].min()) ylims[1] = max(ylims[1], Y[skip:].max()) data += [go.Scattergl(x=pddata["NumIters"], y=Y, name=label)] # p.line(pddata["NumIters"], Y, legend=label, # color=Spectral11[i%11], line_width=2) print(int(pddata["NumIters"].iloc[-1])) plt.legend() ax1.set_ylim(ylims) # p.extra_y_ranges = {"LearningRate": Range1d(start=0, end=pddata['LearningRate'].max()*1.1)} # p.add_layout(LinearAxis(y_range_name="LearningRate"), 'right') # p.line(pddata["NumIters"], # pddata['LearningRate'], # legend='LearningRate', # color='navy', y_range_name="LearningRate") # p.add_layout(LinearAxis(y_range_name="LearningRate"), 'left') # save(p) # ax2 = ax1.twinx() # ax2.plot(pddata["NumIters"], pddata['LearningRate'], alpha=0.4) plt.title('TrainLoss vs NumIters') # ax2.set_ylabel('Learning Rate', color='r') plt.xlabel('NumIters') plt.savefig(path_to_png) url = py.plot(data, filename=path_to_png[0:-4], fileopt='overwrite') print(url)
def plot_hist(ds, user_id: str, x_axis_column=None): """ histogram plot of timeseries data Args: ds (DataStream): user_id (str): uuid of a user x_axis_column (str): x axis column of the plot """ pdf = ds_to_pdf(ds, user_id) cf.set_config_file(offline=True, world_readable=True, theme='ggplot') init_notebook_mode(connected=True) pdf = _remove_cols(pdf) if x_axis_column: data = [go.Histogram(x=pdf[str(x_axis_column)])] iplot(data, filename='basic histogram') else: pdf.iplot(kind='histogram', filename='basic histogram')
def plot(self, traces=None): try: import cufflinks as cf cf.set_config_file(offline=True, theme='white') if traces is None: traces = self.data.columns.drop(TIMESTAMP).tolist() if not isinstance(traces, Iterable): traces = [traces] self.data.iplot(x=TIMESTAMP, y=traces, mode='markers+lines', symbol="x", size=5, width=.5, zerolinecolor="black") except ImportError as exc: logger.exception("It appears there was a problem during plotting.")
def map() -> 'html': Locality_available = list(df.Year.dropna().unique()) cf.set_config_file(offline=True, theme="ggplot") py.offline.init_notebook_mode() the_region = request.form["the_region_selected"] dfs = df.query("Year=='{}'".format(the_region)) State = list(dfs['State'].unique()) State.remove('United States') z = [] for st in State: df4 = dfs[dfs.State == st] z.append(sum(df4['Potentially Excess Deaths'][(df['Locality'] == 'All')][(df['Cause of Death'] == 'Stroke')])) fig = go.Figure(data=go.Choropleth( locations=State, # Spatial coordinates z=z, # Data to be color-coded locationmode='USA-states', # set of locations match entries in `locations` colorscale='Reds', colorbar_title="人数", )) fig.update_layout( title_text='2005-2015年美国各州中风潜在死亡人数', geo_scope='usa', # limite map scope to USA ) py.offline.plot(fig, filename="us.html", auto_open=False) with open("us.html", encoding="utf8", mode="r") as f: plot_all2 = "".join(f.readlines()) #with open("render1.html", encoding="utf8", mode="r") as f: #plot_all3 = "".join(f.readlines()) data_str = df.to_html() return render_template('results3.html', the_plot_all2 = plot_all2, the_res = data_str, the_select_region=Locality_available, )
def interactive_results(y_train, y_train_pred, y_test, y_test_pred): pio.renderers.default = 'colab' cf.set_config_file(theme='pearl') fig = make_subplots(rows=2, cols=1, shared_xaxes=False) enum_x_train = list(range(len(y_train))) enum_x_test = list(range(len(y_test))) fig.append_trace( { 'x': enum_x_train, 'y': y_train, 'type': 'scatter', 'name': 'Real | Train' }, 1, 1) fig.append_trace( { 'x': enum_x_train, 'y': y_train_pred, 'type': 'scatter', 'opacity': 0.7, 'name': 'Predicted | Train' }, 1, 1) fig.append_trace( { 'x': enum_x_test, 'y': y_test, 'type': 'scatter', 'name': 'Real | Test' }, 2, 1) fig.append_trace( { 'x': enum_x_test, 'y': y_test_pred, 'type': 'scatter', 'opacity': 0.7, 'name': 'Predicted | Test' }, 2, 1) #fig['layout'].update(title=title+ ' | RMSE: '+str(RMSE)) iplot(fig)
def plot_plotly(df): """ pip install plotly # Plotly is a pre-requisite before installing cufflinks pip install cufflinks #importing Pandas import pandas as pd #importing plotly and cufflinks in offline mode import cufflinks as cf import plotly.offline cf.go_offline() cf.set_config_file(offline=False, world_readable=True) :param df: :return: """ import cufflinks as cf import plotly.offline cf.go_offline() cf.set_config_file(offline=False, world_readable=True) df.iplot()
def plot_timeseries(ds: DataStream, user_id: str, y_axis_column: str = None): """ line plot of timeseries data Args: ds (DataStream): user_id (str): uuid of a user y_axis_column (str): x axis column is hard coded as timestamp column. only y-axis can be passed as a param """ pdf = ds_to_pdf(ds, user_id) cf.set_config_file(offline=True, world_readable=True, theme='ggplot') init_notebook_mode(connected=True) ts = pdf['timestamp'] pdf = _remove_cols(pdf) if y_axis_column: data = [go.Scatter(x=ts, y=pdf[str(y_axis_column)])] iplot(data, filename='time-series-plot') else: iplot([{ 'x': ts, 'y': pdf[col], 'name': col } for col in pdf.columns], filename='time-series-plot')
def zd_jr_response() -> 'html': jf_available = ['高收入国家','低收入国家'] # 列表下拉值赋予给regions_available cf.set_config_file(offline=True, theme="ggplot") py.offline.init_notebook_mode() the_jf = request.form["the_jf_selected"] dfs = df.query("Country=='{}'".format(the_jf)) # 数据循环模块 def line_markline() -> Line: a = [] times = [] for i in range(1960, 2018): a.append(int(int(dfs[str(i)]) / 100000000)) times.append(str(i)) c = ( Line() .add_xaxis(times) .add_yaxis( "{}".format(the_jf), a, markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="average")]), ) .set_global_opts(title_opts=opts.TitleOpts(title="{}军费占比趋势".format(the_jf))) ) return c line_markline().render() with open("render.html", encoding="utf8", mode="r") as f: plot_all = "".join(f.readlines()) data_str = dfs[:40].to_html() return render_template('zd_jf.html', the_plot_all=plot_all, the_res = data_str, the_select_jf=jf_available, )
git show HEAD^:presentation.pptx > temp.pptx #ひとつ前のコミットを別ファイルとして取りだし+- git add -A 全ての変更をステージング git commit -m "コメント" ステージングした変更をコミット git push リモートに反映 git reset --soft "HEAD^" コミットの削除 --softは変更はそのままにするという意味 """ #---------------------------辞書 dict ------------------------------------ d = {} d['k3'] = 3 #---------------------------import lib library------------------------------------ %matplotlib inline import pandas as pd import cufflinks as cf cf.set_config_file(offline=True, theme="white", offline_show_link=False) cf.go_offline() """ ライブラリのリロード """ import importlib importlib.reload(foo) """ inf弾く """ import numpy as np df.replace([np.inf, -np.inf], np.nan) """
# from jupyter_dash import JupyterDash # except: # import os # os.system("conda install -c conda-forge -c plotly jupyter-dash") # from jupyter_dash import JupyterDash ## PLOTLY IMPORTS/PARAMS import plotly.express as px import plotly.graph_objects as go import plotly.io as pio pio.templates.default = "plotly_dark" ## Acitvating Cufflinks import cufflinks as cf cf.go_offline() cf.set_config_file(sharing='public', theme='solar', offline=True) ## Importing Dash import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output ## Load Functions and Data from functions import CoronaData, plot_states, get_state_ts, plot_group_ts ## LOAD DATA AND SAVE DFs corona_data = CoronaData(verbose=False, run_workflow=True) df = corona_data.df_us.copy() df_world = corona_data.df.copy()
hc.fit(mat) labels = hc.labels_ results = pd.DataFrame([dfdif.T.index,labels]) display(results.loc[:0,results.iloc[1]==0]) display(results.loc[:0,results.iloc[1]==1]) display(results.loc[:0,results.iloc[1]==2]) # My controls are # * WT: I12, J12 # * KO: I13, J13 # * HET: I14, J14 # # So you can identify your genotyping results by looking at: to which control they cluster. # Ploting with plot.ly, so you can look at individual lines for better pattern recognition # In[ ]: import plotly.plotly as py import cufflinks as cf import plotly.graph_objs as go cf.set_config_file(offline=False, world_readable=True, theme='ggplot') dfpy = dfdif.set_index(df_melt.iloc[:,0]) # Plot and embed in ipython notebook! dfpy.iplot(kind='scatter', filename='pyHRM')
import cufflinks as cf import numpy as np import pandas as pd import plotly import plotly.graph_objs as go from plotly import tools from UCB_MIDS_W205.Project.api.great_schools import GreatSchools from UCB_MIDS_W205.Project.api.population import Population from UCB_MIDS_W205.Project.data_models import Datamodel from UCB_MIDS_W205.Project.mission_control import MissionControl from UCB_MIDS_W205.Project.postgresql_handler import Postgresql print(plotly.__version__) # version 1.9.x required plotly.offline.init_notebook_mode() # run at the start of every notebook cf.set_config_file(offline=True, world_readable=False) class Plotter: def __init__(self, min_price=150000, max_price=300000, top_percentage=0.25, top_max_num_entries=30): self.MIN_PRICE = min_price self.MAX_PRICE = max_price self.TOP_PERCENTAGE = top_percentage self.TOP_MAX_NUM_ENTRIES = top_max_num_entries datamodel = Datamodel() self.time_series_postgres = self._initialize_postgres(datamodel.zipcode_timeseries()) self.population_postgres = self._initialize_postgres(datamodel.population()) self.great_schools_postgres = self._initialize_postgres(datamodel.great_schools()) self.zipcode_timeseries = None
import plotly as plty import plotly.graph_objs as go import cufflinks as cf # Before using this, the following changes should be made to the offline.py file in the environment's plotly installation: # * To get to plotly offline install, eg /Users/eczech/anaconda/envs/research3.5/lib/python3.5/site-packages/plotly/offline # - Add the following lines to offline.py in _plot_html after the line "config = {}": # config['modeBarButtonsToRemove'] = ['sendDataToCloud'] # Added manually to remove save icon # config['displaylogo'] = False # Added manually to remove plotly icon # # After doing this, the extra cleaning logic in "plotly_clean_html" is no longer necessary but it is still left # here because it is harmless otherwise and at least strips save icons from serialized plots if the manual edits # above have not been made. # Initialize Jupyter notebook mode cf.set_config_file(offline=True, theme='white', offline_link_text=None, offline_show_link=False) def plotly_clean_html(plotly_filename, auto_open=True): """ Strips Save icon from plot.ly html visualizations """ # Read in source html for viz with open(plotly_filename, 'r') as of: html = of.read() # Replace the target strings (removes "Save" icon) html = html.replace('displaylogo:!0', 'displaylogo:!1') html = html.replace('modeBarButtonsToRemove:[]', 'modeBarButtonsToRemove:["sendDataToCloud"]') # Re-write source html with open(plotly_filename, 'w') as of: of.write(html)
from plotly import tools from plotly.offline.offline import _plot_html import cufflinks as cf import numpy as np import pandas as pd import plotly.graph_objs as go import colorlover as cl # local from .episem import episem, lastepiday cf.set_config_file(theme='white') def ethio_ts(df=pd.DataFrame, scale_id=int, year=int): cols = [ 'Testes positivos', 'Influenza A', 'Influenza B', 'VSR', 'Adenovirus', 'Parainfluenza 1', 'Parainfluenza 2', 'Parainfluenza 3', ] trace = [] if scale_id == 2: ytitle = 'Casos'
import pandas as pd import numpy as np import csv import os import matplotlib.pyplot as plt import cufflinks as cf import plotly import plotly.offline as py from plotly.offline.offline import _plot_html import plotly.graph_objs as go from plotly.tools import FigureFactory as FF cf.set_config_file(world_readable=False,offline=True) plt.style.use('ggplot') def plot(name, *, cols=[], plot_kind=None, start_date=None, end_date=None): """ Plots selected financial data of selected company which ranges over specified date range[start_date:end_date]. The plot is as specified by the plot_kind parameter. :param name: company's ticker cols: list of columns specifying data fields to plot. kind: type of plot. One of 'line', 'box', 'hexbin','scatter_matrix'. start_date: The data is indexed by the Date column. starting date specifies the first date index row to be plotted. end_date: end_date specifies the last date index row to be plotted. """ header = ['Date','Total Transactions','Traded Shares','TotalTraded Amount', 'Maximum Price','Minimum Price','Closing Price'] plottypes = ['line', 'box', 'hexbin','scatter_matrix']
import plotly.graph_objs as go from plotly.offline import init_notebook_mode, iplot import plotly.io as pio pio.orca.config.executable = '/u/fs1/vatj2/.local/bin//orca' pio.orca.config.save() import pandas as pd import numpy as np from plotly.colors import DEFAULT_PLOTLY_COLORS import cufflinks as cf import itertools # In[ ]: init_notebook_mode(connected=True) cf.set_config_file(offline=True) figure_dir = os.path.join(os.getcwd(), '..', 'figures') if not os.path.exists(figure_dir): os.mkdir(figure_dir) data_dir = os.path.join(os.getcwd(), "..", "data", "V" + ipa.__version__) if not os.path.exists(data_dir): os.mkdir(data_dir) # In[ ]: p = dict() p["n_genes"] = 3 p["low_colour"] = 0
import html from flask import Flask, render_template, request import pandas as pd import cufflinks as cf import plotly as py import plotly.graph_objs as go app = Flask(__name__) # 准备工作 df = pd.read_csv('douban_movie.csv', encoding='utf-8', delimiter="\t") cf.set_config_file(offline=True, theme="ggplot") regions_available = list(df.concluding.dropna().unique()) print(regions_available) # 读取数据确认 @app.route('/',methods=['GET']) def douban_2019(): data_str = df.to_html() return render_template('results.html', the_res = data_str, the_select_region=regions_available, ) # 初始表格置入选择
def plot_model(model, plot='2d'): """ Description: ------------ This function takes a model dataframe returned by create_model() function. '2d' and '3d' plots are available. Example: -------- rule1 = create_model(metric='confidence', threshold=0.7, min_support=0.05) plot_model(rule1, plot='2d') plot_model(rule1, plot='3d') Parameters ---------- model : DataFrame, default = none DataFrame returned by trained model using create_model(). plot : string, default = '2d' Enter abbreviation of type of plot. The current list of plots supported are: Name Abbreviated String --------- ------------------ Support, Confidence and Lift (2d) '2d' Support, Confidence and Lift (3d) '3d' Returns: -------- Visual Plot: Prints the visual plot. ------------ """ #loading libraries import numpy as np import pandas as pd import plotly.express as px from IPython.display import display, HTML, clear_output, update_display #import cufflinks import cufflinks as cf cf.go_offline() cf.set_config_file(offline=False, world_readable=True) #copy dataframe data_ = model.copy() antecedents = [] for i in data_['antecedents']: i = str(i) a = i.split(sep="'") a = a[1] antecedents.append(a) data_['antecedents'] = antecedents antecedents_short = [] for i in antecedents: a = i[:10] antecedents_short.append(a) data_['antecedents_short'] = antecedents_short consequents = [] for i in data_['consequents']: i = str(i) a = i.split(sep="'") a = a[1] consequents.append(a) data_['consequents'] = consequents if plot == '2d': fig = px.scatter( data_, x="support", y="confidence", text="antecedents_short", log_x=True, size_max=600, color='lift', hover_data=['antecedents', 'consequents'], opacity=0.5, ) fig.update_traces(textposition='top center') fig.update_layout(plot_bgcolor='rgb(240,240,240)') fig.update_layout(height=800, title_text='2D Plot of Support, Confidence and Lift') fig.show() if plot == '3d': fig = px.scatter_3d(data_, x='support', y='confidence', z='lift', color='antecedent support', title='3d Plot for Rule Mining', opacity=0.7, width=900, height=800, hover_data=['antecedents', 'consequents']) fig.show()
""" If you want to make a plot, change the folder name after installing plotly,cufflink and run the following code. folder_name='new_results' """ import pandas as pd import os, time import glob import cufflinks as cf import plotly.offline cf.go_offline() cf.set_config_file(offline=True, world_readable=True) import torchvision.models as models MODEL_LIST = { 'mnasnet': models.mnasnet.__all__[1:], 'resnet': models.resnet.__all__[1:], 'densenet': models.densenet.__all__[1:], 'squeezenet': models.squeezenet.__all__[1:], 'vgg': models.vgg.__all__[1:], #'mobilenet':[m for m in models.mobilenet.__all__[1:] if m.islower()], 'mobilenet': ['mobilenet_v2', 'mobilenet_v3_large', 'mobilenet_v3_small'], 'shufflenetv2': models.shufflenetv2.__all__[1:] } setattr(plotly.offline, "__PLOTLY_OFFLINE_INITIALIZED", True) folder_name = 'result/' csv_list = glob.glob(folder_name + '/*.csv') columes = [] for key, values in MODEL_LIST.items(): for i in values: columes.append((key, i)) for csv in csv_list:
from plotly.offline.offline import _plot_html import cufflinks as cf import pandas as pd cf.set_config_file(theme='pearl', offline=True) class ReportCityCharts: @classmethod def create_incidence_chart( cls, df: pd.DataFrame, year_week: int, threshold_pre_epidemic: float, threshold_pos_epidemic: float, threshold_epidemic: float ) -> 'Plotly_HTML': """ @see: https://stackoverflow.com/questions/45526734/ hide-legend-entries-in-a-plotly-figure :param df: :param year_week: :param threshold_pre_epidemic: float, :param threshold_pos_epidemic: float :param threshold_epidemic: float :return: """ df = df.reset_index()[[ 'SE', 'incidência', 'casos notif.', 'level_code' ]] # 200 = 2 years