def get_neighbors(self, n_neighbors): """ Returns the default n_neighbors, initialized from the constructor, if n_neighbors is None. Parameters ---------- n_neighbors : int Number of neighbors Returns -------- n_neighbors: int Default n_neighbors if parameter n_neighbors is none """ if n_neighbors is None: if "n_neighbors" in self.kwargs \ and self.kwargs["n_neighbors"] is not None: n_neighbors = self.kwargs["n_neighbors"] else: try: from cuml.neighbors.nearest_neighbors_mg import \ NearestNeighborsMG as cumlNN except ImportError: raise_mg_import_exception() n_neighbors = cumlNN().n_neighbors return n_neighbors
def _func_create_model(sessionId, **kwargs): try: from cuml.neighbors.nearest_neighbors_mg import \ NearestNeighborsMG as cumlNN except ImportError: raise_mg_import_exception() handle = get_raft_comm_state(sessionId)["handle"] return cumlNN(handle=handle, **kwargs)
def get_neighbors(self, n_neighbors): """ Returns the default n_neighbors, initialized from the constructor, if n_neighbors is None :param n_neighbors: :return: """ if n_neighbors is None: if "n_neighbors" in self.model_args \ and self.model_args["n_neighbors"] is not None: n_neighbors = self.model_args["n_neighbors"] else: try: from cuml.neighbors.nearest_neighbors_mg import \ NearestNeighborsMG as cumlNN except ImportError: raise_mg_import_exception() n_neighbors = cumlNN().n_neighbors return n_neighbors
def _func_fit(sessionId, dfs, **kwargs): """ Runs on each worker to call fit on local KMeans instance. Extracts centroids :param model: Local KMeans instance :param dfs: List of cudf.Dataframes to use :param r: Stops memoization caching :return: The fit model """ try: from cuml.cluster.kmeans_mg import KMeansMG as cumlKMeans except ImportError: raise_mg_import_exception() handle = worker_state(sessionId)["handle"] df = concat(dfs) return cumlKMeans(handle=handle, **kwargs).fit(df)