示例#1
0
def test_labelencoder_unfitted(client):
    """ Try calling `.transform()` without fitting first
    """
    df = dask_cudf.from_cudf(cudf.Series(np.random.choice(10, (10, ))),
                             npartitions=len(client.has_what()))
    le = LabelEncoder()
    with pytest.raises(NotFittedError):
        le.transform(df).compute()
示例#2
0
def test_unfitted_inverse_transform(client):
    """ Try calling `.inverse_transform()` without fitting first
    """
    tmp = cudf.Series(np.random.choice(10, (10, )))
    df = dask_cudf.from_cudf(tmp, npartitions=len(client.has_what()))
    le = LabelEncoder()

    with pytest.raises(NotFittedError):
        le.transform(df)
示例#3
0
def test_labelencoder_unseen(client):
    """ Try encoding a value that was not present during fitting
    """
    df = dask_cudf.from_cudf(cudf.Series(np.random.choice(10, (10, ))),
                             npartitions=len(client.has_what()))
    le = LabelEncoder().fit(df)
    assert le._fitted

    with pytest.raises(KeyError):
        tmp = dask_cudf.from_cudf(cudf.Series([-100, -120]),
                                  npartitions=len(client.has_what()))
        le.transform(tmp).compute()
示例#4
0
def test_labelencoder_transform(length, cardinality, client):
    """ Try fitting and then encoding a small subset of the df
    """
    tmp = cudf.Series(np.random.choice(cardinality, (length, )))
    df = dask_cudf.from_cudf(tmp, npartitions=len(client.has_what()))
    le = LabelEncoder().fit(df)
    assert le._fitted

    encoded = le.transform(df)

    df_arr = df.compute().to_numpy()
    df_arr = _arr_to_similarity_mat(df_arr)
    encoder_arr = cp.asnumpy(encoded.compute().to_numpy())
    encoded_arr = _arr_to_similarity_mat(encoder_arr)
    assert ((encoded_arr == encoded_arr.T) == (df_arr == df_arr.T)).all()