def test__repr__(): assert cuStandardScaler().__repr__() == 'StandardScaler()' assert cuMinMaxScaler().__repr__() == 'MinMaxScaler()' assert cuMaxAbsScaler().__repr__() == 'MaxAbsScaler()' assert cuNormalizer().__repr__() == 'Normalizer()' assert cuBinarizer().__repr__() == 'Binarizer()' assert cuPolynomialFeatures().__repr__() == 'PolynomialFeatures()' assert cuSimpleImputer().__repr__() == 'SimpleImputer()' assert cuRobustScaler().__repr__() == 'RobustScaler()' assert cuKBinsDiscretizer().__repr__() == 'KBinsDiscretizer()'
def test_binarizer(failure_logger, clf_dataset, threshold): # noqa: F811 X_np, X = clf_dataset binarizer = cuBinarizer(threshold=threshold, copy=True) t_X = binarizer.fit_transform(X) assert type(t_X) == type(X) binarizer = skBinarizer(threshold=threshold, copy=True) sk_t_X = binarizer.fit_transform(X_np) assert_allclose(t_X, sk_t_X)
def test_binarizer_sparse(failure_logger, sparse_clf_dataset, # noqa: F811 threshold): X_np, X = sparse_clf_dataset binarizer = cuBinarizer(threshold=threshold, copy=True) t_X = binarizer.fit_transform(X) # assert type(t_X) == type(X) if cpx.scipy.sparse.issparse(X): assert cpx.scipy.sparse.issparse(t_X) if scipy.sparse.issparse(X): assert scipy.sparse.issparse(t_X) binarizer = skBinarizer(threshold=threshold, copy=True) sk_t_X = binarizer.fit_transform(X_np) assert_allclose(t_X, sk_t_X)