示例#1
0
    def call(self, env, *args, unroll=None):
        if len(args) == 0:
            raise TypeError('range expected at least 1 argument, got 0')
        elif len(args) == 1:
            start, stop, step = Constant(0), args[0], Constant(1)
        elif len(args) == 2:
            start, stop, step = args[0], args[1], Constant(1)
        elif len(args) == 3:
            start, stop, step = args
        else:
            raise TypeError(
                f'range expected at most 3 argument, got {len(args)}')

        if unroll is not None:
            if not all(isinstance(x, Constant)
                       for x in (start, stop, step, unroll)):
                raise TypeError(
                    'loop unrolling requires constant start, stop, step and '
                    'unroll value')
            unroll = unroll.obj
            if not (isinstance(unroll, int) or isinstance(unroll, bool)):
                raise TypeError(
                    'unroll value expected to be of type int, '
                    f'got {type(unroll).__name__}')
            if unroll is False:
                unroll = 1
            if not (unroll is True or 0 < unroll < 1 << 31):
                warnings.warn(
                    'loop unrolling is ignored as the unroll value is '
                    'non-positive or greater than INT_MAX')

        if isinstance(step, Constant):
            step_is_positive = step.obj >= 0
        elif step.ctype.dtype.kind == 'u':
            step_is_positive = True
        else:
            step_is_positive = None

        stop = Data.init(stop, env)
        start = Data.init(start, env)
        step = Data.init(step, env)

        if start.ctype.dtype.kind not in 'iu':
            raise TypeError('range supports only for integer type.')
        if stop.ctype.dtype.kind not in 'iu':
            raise TypeError('range supports only for integer type.')
        if step.ctype.dtype.kind not in 'iu':
            raise TypeError('range supports only for integer type.')

        if env.mode == 'numpy':
            ctype = _cuda_types.Scalar(int)
        elif env.mode == 'cuda':
            ctype = stop.ctype
        else:
            assert False

        return Range(start, stop, step, ctype, step_is_positive, unroll=unroll)
示例#2
0
def _eval_operand(op, args, env):
    if is_constants(*args):
        pyfunc = _cuda_typerules.get_pyfunc(type(op))
        return Constant(pyfunc(*[x.obj for x in args]))

    ufunc = _cuda_typerules.get_ufunc(env.mode, type(op))
    return _call_ufunc(ufunc, args, None, env)
示例#3
0
文件: _compile.py 项目: takagi/cupy
def _astype_scalar(
    x: _T,
    ctype: _cuda_types.Scalar,
    casting: _CastingType,
    env: Environment,
) -> _T:
    if isinstance(x, Constant):
        assert not isinstance(x, Data)
        return Constant(ctype.dtype.type(x.obj))
    # # TODO
    # if not isinstance(x, Data):
    #     raise TypeError(f'{x} is not scalar type.')
    if not isinstance(x.ctype, _cuda_types.Scalar):
        raise TypeError(f'{x.code} is not scalar type.')
    from_t = x.ctype.dtype
    to_t = ctype.dtype
    if from_t == to_t:
        return x
    # Uses casting rules for scalar values.
    if not numpy.can_cast(from_t.type(0), to_t.type(0), casting):
        raise TypeError(f"Cannot cast from '{from_t}' to {to_t} "
                        f"with casting rule {casting}.")
    if from_t.kind == 'c' and to_t.kind != 'c':
        if to_t.kind != 'b':
            warnings.warn(
                'Casting complex values to real discards the imaginary part',
                numpy.ComplexWarning)
        return Data(f'({ctype})({x.code}.real())', ctype)
    return Data(f'({ctype})({x.code})', ctype)
示例#4
0
文件: _compile.py 项目: takagi/cupy
def _eval_operand(
    op: ast.AST,
    args: Sequence[Union[Constant, Data]],
    env: Environment,
) -> Union[Constant, Data]:
    if is_constants(*args):
        pyfunc = _cuda_typerules.get_pyfunc(type(op))
        return Constant(pyfunc(*[x.obj for x in args]))

    ufunc = _cuda_typerules.get_ufunc(env.mode, type(op))
    return _call_ufunc(ufunc, args, None, env)
示例#5
0
    def call(self, env, mask, var, val_id, *, width=None):
        name = self._name

        var = Data.init(var, env)
        ctype = var.ctype
        if ctype.dtype.name not in self._dtypes:
            raise TypeError(f'`{name}` does not support {ctype.dtype} input.')

        try:
            mask = mask.obj
        except Exception:
            raise TypeError('mask must be an integer')
        if runtime.is_hip:
            warnings.warn(f'mask {mask} is ignored on HIP', RuntimeWarning)
        elif not (0x0 <= mask <= 0xffffffff):
            raise ValueError('mask is out of range')

        # val_id refers to "delta" for shfl_{up, down}, "srcLane" for shfl, and
        # "laneMask" for shfl_xor
        if self._op in ('up', 'down'):
            val_id_t = _cuda_types.uint32
        else:
            val_id_t = _cuda_types.int32
        val_id = _compile._astype_scalar(val_id, val_id_t, 'same_kind', env)
        val_id = Data.init(val_id, env)

        if width:
            if isinstance(width, Constant):
                if width.obj not in (2, 4, 8, 16, 32):
                    raise ValueError('width needs to be power of 2')
        else:
            width = Constant(64) if runtime.is_hip else Constant(32)
        width = _compile._astype_scalar(width, _cuda_types.int32, 'same_kind',
                                        env)
        width = Data.init(width, env)

        code = f'{name}({hex(mask)}, {var.code}, {val_id.code}'
        code += f', {width.code})'
        return Data(code, ctype)
示例#6
0
    def call(self, env, *args, **kwargs):
        if len(args) == 0:
            raise TypeError('range expected at least 1 argument, got 0')
        elif len(args) == 1:
            start, stop, step = Constant(0), args[0], Constant(1)
        elif len(args) == 2:
            start, stop, step = args[0], args[1], Constant(1)
        elif len(args) == 3:
            start, stop, step = args
        else:
            raise TypeError(
                f'range expected at most 3 argument, got {len(args)}')

        if isinstance(step, Constant):
            step_is_positive = step.obj >= 0
        elif step.ctype.dtype.kind == 'u':
            step_is_positive = True
        else:
            step_is_positive = None

        stop = Data.init(stop, env)
        start = Data.init(start, env)
        step = Data.init(step, env)

        if start.ctype.dtype.kind not in 'iu':
            raise TypeError('range supports only for integer type.')
        if stop.ctype.dtype.kind not in 'iu':
            raise TypeError('range supports only for integer type.')
        if step.ctype.dtype.kind not in 'iu':
            raise TypeError('range supports only for integer type.')

        if env.mode == 'numpy':
            ctype = _cuda_types.Scalar(int)
        elif env.mode == 'cuda':
            ctype = stop.ctype
        else:
            assert False

        return Range(start, stop, step, ctype, step_is_positive)
示例#7
0
文件: _compile.py 项目: takagi/cupy
def _indexing(
    array: _internal_types.Expr,
    index: _internal_types.Expr,
    env: Environment,
) -> Union[Data, Constant]:
    if isinstance(array, Constant):
        if isinstance(index, Constant):
            return Constant(array.obj[index.obj])
        raise TypeError(
            f'{type(array.obj)} is not subscriptable with non-constants.')

    array = Data.init(array, env)

    if isinstance(array.ctype, _cuda_types.Tuple):
        if isinstance(index, Constant):
            i = index.obj
            t = array.ctype.types[i]
            return Data(f'thrust::get<{i}>({array.code})', t)
        raise TypeError('Tuple is not subscriptable with non-constants.')

    if isinstance(array.ctype, _cuda_types.ArrayBase):
        index = Data.init(index, env)
        ndim = array.ctype.ndim
        if isinstance(index.ctype, _cuda_types.Scalar):
            index_dtype = index.ctype.dtype
            if ndim != 1:
                raise TypeError(
                    'Scalar indexing is supported only for 1-dim array.')
            if index_dtype.kind not in 'ui':
                raise TypeError('Array indices must be integers.')
            return Data(f'{array.code}[{index.code}]', array.ctype.child_type)
        if isinstance(index.ctype, _cuda_types.Tuple):
            if ndim != len(index.ctype.types):
                raise IndexError(f'The size of index must be {ndim}')
            for t in index.ctype.types:
                if not isinstance(t, _cuda_types.Scalar):
                    raise TypeError('Array indices must be scalar.')
                if t.dtype.kind not in 'iu':
                    raise TypeError('Array indices must be integer.')
            if ndim == 0:
                return Data(f'{array.code}[0]', array.ctype.child_type)
            if ndim == 1:
                return Data(f'{array.code}[thrust::get<0>({index.code})]',
                            array.ctype.child_type)
            return Data(f'{array.code}._indexing({index.code})',
                        array.ctype.child_type)
        if isinstance(index.ctype, _cuda_types.CArray):
            raise TypeError('Advanced indexing is not supported.')
        assert False  # Never reach.

    raise TypeError(f'{array.code} is not subscriptable.')
示例#8
0
def _transpile_function_internal(func, attributes, mode, consts, in_types,
                                 ret_type):
    consts = dict([(k, Constant(v)) for k, v, in consts.items()])

    if not isinstance(func, ast.FunctionDef):
        # TODO(asi1024): Support for `ast.ClassDef`.
        raise NotImplementedError('Not supported: {}'.format(type(func)))
    if len(func.decorator_list) > 0:
        if sys.version_info >= (3, 9):
            # Code path for Python versions that support `ast.unparse`.
            for deco in func.decorator_list:
                deco_code = ast.unparse(deco)
                if not any(word in deco_code
                           for word in ['rawkernel', 'vectorize']):
                    warnings.warn(
                        f'Decorator {deco_code} may not supported in JIT.',
                        RuntimeWarning)
    arguments = func.args
    if arguments.vararg is not None:
        raise NotImplementedError('`*args` is not supported currently.')
    if len(arguments.kwonlyargs) > 0:  # same length with `kw_defaults`.
        raise NotImplementedError(
            'keyword only arguments are not supported currently .')
    if arguments.kwarg is not None:
        raise NotImplementedError('`**kwargs` is not supported currently.')
    if len(arguments.defaults) > 0:
        raise NotImplementedError(
            'Default values are not supported currently.')

    args = [arg.arg for arg in arguments.args]
    if len(args) != len(in_types):
        raise TypeError(
            f'{func.name}() takes {len(args)} positional arguments '
            f'but {len(in_types)} were given.')
    params = dict([(x, Data(x, t)) for x, t in zip(args, in_types)])
    env = Environment(mode, consts, params, ret_type)
    body = _transpile_stmts(func.body, True, env)
    params = ', '.join([env[a].ctype.declvar(a) for a in args])
    local_vars = [v.ctype.declvar(n) + ';' for n, v in env.locals.items()]

    if env.ret_type is None:
        env.ret_type = _cuda_types.void

    head = f'{attributes} {env.ret_type} {func.name}({params})'
    code = CodeBlock(head, local_vars + body)
    return str(code), env
示例#9
0
def _astype_scalar(x, ctype, casting, env):
    if is_constants(x):
        return Constant(ctype.dtype.type(x.obj))

    from_t = x.ctype.dtype
    to_t = ctype.dtype
    if from_t == to_t:
        return x
    # Uses casting rules for scalar values.
    if not numpy.can_cast(from_t.type(0), to_t.type(0), casting):
        raise TypeError(f"Cannot cast from '{from_t}' to {to_t} "
                        f"with casting rule {casting}.")
    if from_t.kind == 'c' and to_t.kind != 'c':
        if to_t.kind != 'b':
            warnings.warn(
                'Casting complex values to real discards the imaginary part',
                numpy.ComplexWarning)
        return Data(f'({ctype})({x.code}.real())', ctype)
    return Data(f'({ctype})({x.code})', ctype)
示例#10
0
def _transpile_expr_internal(expr, env):
    if isinstance(expr, ast.BoolOp):
        values = [_transpile_expr(e, env) for e in expr.values]
        value = values[0]
        for rhs in values[1:]:
            value = _eval_operand(expr.op, (value, rhs), env)
        return value
    if isinstance(expr, ast.BinOp):
        left = _transpile_expr(expr.left, env)
        right = _transpile_expr(expr.right, env)
        return _eval_operand(expr.op, (left, right), env)
    if isinstance(expr, ast.UnaryOp):
        value = _transpile_expr(expr.operand, env)
        return _eval_operand(expr.op, (value, ), env)
    if isinstance(expr, ast.Lambda):
        raise NotImplementedError('Not implemented.')
    if isinstance(expr, ast.Compare):
        values = [expr.left] + expr.comparators
        if len(values) != 2:
            raise NotImplementedError(
                'Comparison of 3 or more values is not implemented.')
        values = [_transpile_expr(e, env) for e in values]
        return _eval_operand(expr.ops[0], values, env)
    if isinstance(expr, ast.IfExp):
        cond = _transpile_expr(expr.test, env)
        x = _transpile_expr(expr.body, env)
        y = _transpile_expr(expr.orelse, env)

        if isinstance(expr, Constant):
            return x if expr.obj else y
        if cond.ctype.dtype.kind == 'c':
            raise TypeError("Complex type value cannot be boolean condition.")
        x, y = _infer_type(x, y, env), _infer_type(y, x, env)
        if x.ctype.dtype != y.ctype.dtype:
            raise TypeError('Type mismatch in conditional expression.: '
                            f'{x.ctype.dtype} != {y.ctype.dtype}')
        cond = _astype_scalar(cond, _cuda_types.bool_, 'unsafe', env)
        return Data(f'({cond.code} ? {x.code} : {y.code})', x.ctype)

    if isinstance(expr, ast.Call):
        func = _transpile_expr(expr.func, env)
        args = [_transpile_expr(x, env) for x in expr.args]
        kwargs = dict([(kw.arg, _transpile_expr(kw.value, env))
                       for kw in expr.keywords])

        builtin_funcs = _builtin_funcs.builtin_functions_dict
        if is_constants(func) and (func.obj in builtin_funcs):
            func = builtin_funcs[func.obj]

        if isinstance(func, _internal_types.BuiltinFunc):
            return func.call(env, *args, **kwargs)

        if not is_constants(func):
            raise TypeError(f"'{func}' is not callable.")

        func = func.obj

        if is_constants(*args, *kwargs.values()):
            # compile-time function call
            args = [x.obj for x in args]
            kwargs = dict([(k, v.obj) for k, v in kwargs.items()])
            return Constant(func(*args, **kwargs))

        if isinstance(func, _kernel.ufunc):
            # ufunc call
            dtype = kwargs.pop('dtype', Constant(None)).obj
            if len(kwargs) > 0:
                name = next(iter(kwargs))
                raise TypeError(
                    f"'{name}' is an invalid keyword to ufunc {func.name}")
            return _call_ufunc(func, args, dtype, env)

        if inspect.isclass(func) and issubclass(func, _typeclasses):
            # explicit typecast
            if len(args) != 1:
                raise TypeError(
                    f'function takes {func} invalid number of argument')
            ctype = _cuda_types.Scalar(func)
            return _astype_scalar(args[0], ctype, 'unsafe', env)

        if isinstance(func, _interface._JitRawKernel) and func._device:
            args = [Data.init(x, env) for x in args]
            in_types = tuple([x.ctype for x in args])
            fname, return_type = _transpile_func_obj(func._func,
                                                     ['__device__'], env.mode,
                                                     in_types, None,
                                                     env.generated)
            in_params = ', '.join([x.code for x in args])
            return Data(f'{fname}({in_params})', return_type)

        raise TypeError(f"Invalid function call '{fname}'.")

    if isinstance(expr, ast.Constant):
        return Constant(expr.value)
    if isinstance(expr, ast.Num):
        # Deprecated since py3.8
        return Constant(expr.n)
    if isinstance(expr, ast.Str):
        # Deprecated since py3.8
        return Constant(expr.s)
    if isinstance(expr, ast.NameConstant):
        # Deprecated since py3.8
        return Constant(expr.value)
    if isinstance(expr, ast.Subscript):
        array = _transpile_expr(expr.value, env)
        index = _transpile_expr(expr.slice, env)
        return _indexing(array, index, env)
    if isinstance(expr, ast.Name):
        value = env[expr.id]
        if value is None:
            raise NameError(f'Unbound name: {expr.id}')
        return env[expr.id]
    if isinstance(expr, ast.Attribute):
        value = _transpile_expr(expr.value, env)
        if is_constants(value):
            return Constant(getattr(value.obj, expr.attr))
        if isinstance(value.ctype, _cuda_types.ArrayBase):
            if 'ndim' == expr.attr:
                return Constant(value.ctype.ndim)
        if isinstance(value.ctype, _cuda_types.CArray):
            if 'size' == expr.attr:
                return Data(f'static_cast<long long>({value.code}.size())',
                            _cuda_types.Scalar('q'))
        if isinstance(value.ctype, _interface._Dim3):
            if expr.attr in ('x', 'y', 'z'):
                return Data(f'{value.code}.{expr.attr}', _cuda_types.uint32)
        # TODO(leofang): support arbitrary Python class methods
        if isinstance(value.ctype, _ThreadGroup):
            return _internal_types.BuiltinFunc.from_class_method(
                value.code, getattr(value.ctype, expr.attr))
        raise NotImplementedError('Not implemented: __getattr__')

    if isinstance(expr, ast.Tuple):
        elts = [_transpile_expr(x, env) for x in expr.elts]
        # TODO: Support compile time constants.
        elts = [Data.init(x, env) for x in elts]
        elts_code = ', '.join([x.code for x in elts])
        ctype = _cuda_types.Tuple([x.ctype for x in elts])
        return Data(f'thrust::make_tuple({elts_code})', ctype)

    if isinstance(expr, ast.Index):
        return _transpile_expr(expr.value, env)

    raise ValueError('Not supported: type {}'.format(type(expr)))
示例#11
0
def _transpile_expr_internal(expr, env):
    if isinstance(expr, ast.BoolOp):
        values = [_transpile_expr(e, env) for e in expr.values]
        value = values[0]
        for rhs in values[1:]:
            value = _eval_operand(expr.op, (value, rhs), env)
        return value
    if isinstance(expr, ast.BinOp):
        left = _transpile_expr(expr.left, env)
        right = _transpile_expr(expr.right, env)
        return _eval_operand(expr.op, (left, right), env)
    if isinstance(expr, ast.UnaryOp):
        value = _transpile_expr(expr.operand, env)
        return _eval_operand(expr.op, (value, ), env)
    if isinstance(expr, ast.Lambda):
        raise NotImplementedError('Not implemented.')
    if isinstance(expr, ast.Compare):
        values = [expr.left] + expr.comparators
        if len(values) != 2:
            raise NotImplementedError(
                'Comparison of 3 or more values is not implemented.')
        values = [_transpile_expr(e, env) for e in values]
        return _eval_operand(expr.ops[0], values, env)
    if isinstance(expr, ast.IfExp):
        cond = _transpile_expr(expr.test, env)
        x = _transpile_expr(expr.body, env)
        y = _transpile_expr(expr.orelse, env)

        if isinstance(expr, Constant):
            return x if expr.obj else y
        if cond.ctype.dtype.kind == 'c':
            raise NotImplementedError('')
        x = Data.init(x, env)
        y = Data.init(y, env)
        if x.ctype.dtype != y.ctype.dtype:
            raise TypeError('Type mismatch in conditional expression.: '
                            f'{x.ctype.dtype} != {y.ctype.dtype}')
        cond = _astype_scalar(cond, _cuda_types.bool_, 'unsafe', env)
        return Data(f'({cond.code} ? {x.code} : {y.code})', x.ctype)

    if isinstance(expr, ast.Call):
        func = _transpile_expr(expr.func, env)
        args = [_transpile_expr(x, env) for x in expr.args]
        kwargs = dict([(kw.arg, _transpile_expr(kw.value, env))
                       for kw in expr.keywords])

        builtin_funcs = _builtin_funcs.builtin_functions_dict
        if is_constants(func) and (func.obj in builtin_funcs):
            func = builtin_funcs[func.obj]

        if isinstance(func, _internal_types.BuiltinFunc):
            return func.call(env, *args, **kwargs)

        if not is_constants(func):
            raise NotImplementedError(
                'device function call is not implemented.')

        func = func.obj

        if is_constants(*args, *kwargs.values()):
            # compile-time function call
            args = [x.obj for x in args]
            kwargs = dict([(k, v.obj) for k, v in kwargs.items()])
            return Constant(func(*args, **kwargs))

        if isinstance(func, _kernel.ufunc):
            # ufunc call
            dtype = kwargs.pop('dtype', Constant(None)).obj
            if len(kwargs) > 0:
                name = next(iter(kwargs))
                raise TypeError(
                    f"'{name}' is an invalid keyword to ufunc {func.name}")
            return _call_ufunc(func, args, dtype, env)

        if inspect.isclass(func) and issubclass(func, _typeclasses):
            # explicit typecast
            if len(args) != 1:
                raise TypeError(
                    f'function takes {func} invalid number of argument')
            ctype = _cuda_types.Scalar(func)
            return _astype_scalar(args[0], ctype, 'unsafe', env)

        raise NotImplementedError(
            f'function call of `{func.__name__}` is not implemented')

    if isinstance(expr, ast.Constant):
        return Constant(expr.value)
    if isinstance(expr, ast.Num):
        # Deprecated since py3.8
        return Constant(expr.n)
    if isinstance(expr, ast.Str):
        # Deprecated since py3.8
        return Constant(expr.s)
    if isinstance(expr, ast.NameConstant):
        # Deprecated since py3.8
        return Constant(expr.value)

    if isinstance(expr, ast.Subscript):
        value = _transpile_expr(expr.value, env)
        index = _transpile_expr(expr.slice, env)

        if is_constants(value):
            if is_constants(index):
                return Constant(value.obj[index.obj])
            raise TypeError(
                f'{type(value.obj)} is not subscriptable with non-constants.')

        value = Data.init(value, env)

        if isinstance(value.ctype, _cuda_types.Tuple):
            raise NotImplementedError

        if isinstance(value.ctype, _cuda_types.ArrayBase):
            index = Data.init(index, env)
            ndim = value.ctype.ndim
            if isinstance(index.ctype, _cuda_types.Scalar):
                index_dtype = index.ctype.dtype
                if ndim != 1:
                    raise TypeError(
                        'Scalar indexing is supported only for 1-dim array.')
                if index_dtype.kind not in 'ui':
                    raise TypeError('Array indices must be integers.')
                return Data(f'{value.code}[{index.code}]',
                            value.ctype.child_type)
            if isinstance(index.ctype, _cuda_types.Tuple):
                if ndim != len(index.ctype.types):
                    raise IndexError(f'The size of index must be {ndim}')
                for t in index.ctype.types:
                    if not isinstance(t, _cuda_types.Scalar):
                        raise TypeError('Array indices must be scalar.')
                    if t.dtype.kind not in 'iu':
                        raise TypeError('Array indices must be integer.')
                if ndim == 0:
                    return Data(f'{value.code}[0]', value.ctype.child_type)
                if ndim == 1:
                    return Data(f'{value.code}[thrust::get<0>({index.code})]',
                                value.ctype.child_type)
                return Data(f'{value.code}._indexing({index.code})',
                            value.ctype.child_type)
            if isinstance(index.ctype, _cuda_types.Array):
                raise TypeError('Advanced indexing is not supported.')
            assert False  # Never reach.

        raise TypeError(f'{value.code} is not subscriptable.')

    if isinstance(expr, ast.Name):
        value = env[expr.id]
        if value is None:
            raise NameError(f'Unbound name: {expr.id}')
        return env[expr.id]
    if isinstance(expr, ast.Attribute):
        value = _transpile_expr(expr.value, env)
        if is_constants(value):
            return Constant(getattr(value.obj, expr.attr))
        raise NotImplementedError('Not implemented: __getattr__')

    if isinstance(expr, ast.Tuple):
        elts = [_transpile_expr(x, env) for x in expr.elts]
        # TODO: Support compile time constants.
        elts = [Data.init(x, env) for x in elts]
        elts_code = ', '.join([x.code for x in elts])
        ctype = _cuda_types.Tuple([x.ctype for x in elts])
        return Data(f'thrust::make_tuple({elts_code})', ctype)

    if isinstance(expr, ast.Index):
        return _transpile_expr(expr.value, env)

    raise ValueError('Not supported: type {}'.format(type(expr)))