def create_raincell_from_wrf(run_ts, wrf_out, raincell_points_file, observation_points, output, mysql_config_path=None): """ :param run_ts: running timestamp %Y:%m:%d_%H:%M:%S :param wrf_out: corresponding wrf output location :param raincell_points_file: file with the flo2d raincell points - [id, lat, lon] :param observation_points: observation points array of array [[id, lat, lon]] :param output: output file location """ raincell_points = np.genfromtxt(raincell_points_file, delimiter=',') lon_min = np.min(raincell_points, 0)[1] lat_min = np.min(raincell_points, 0)[2] lon_max = np.max(raincell_points, 0)[1] lat_max = np.max(raincell_points, 0)[2] rf_vars = ['RAINC', 'RAINNC'] rf_values = rf_ext_utils.extract_variables(wrf_out, rf_vars, lat_min, lat_max, lon_min, lon_max) cum_precip = rf_values[rf_vars[0]] for i in range(1, len(rf_vars)): cum_precip = cum_precip + rf_values[rf_vars[i]] ts_idx = int(np.argwhere(rf_values['Times'] == run_ts)) observed = get_observed_rf(start, end, points, mysql_config_path) pass
def extract_mean_rainfall_from_shp_file(nc_f, wrf_output, output_prefix, output_name, basin_shp_file, basin_extent, curw_db_adapter=None, curw_db_upsert=False, run_prefix='WRF', run_name='Cloud-1'): lon_min, lat_min, lon_max, lat_max = basin_extent nc_vars = ext_utils.extract_variables(nc_f, ['RAINC', 'RAINNC'], lat_min, lat_max, lon_min, lon_max) lats = nc_vars['XLAT'] lons = nc_vars['XLONG'] prcp = nc_vars['RAINC'] + nc_vars['RAINNC'] times = nc_vars['Times'] diff = ext_utils.get_two_element_average(prcp) polys = shapefile.Reader(basin_shp_file) output_dir = utils.create_dir_if_not_exists(os.path.join(wrf_output, output_prefix)) with TemporaryDirectory(prefix=output_prefix) as temp_dir: output_file_path = os.path.join(temp_dir, output_prefix + '.txt') kub_rf = {} with open(output_file_path, 'w') as output_file: kub_rf[output_name] = [] for t in range(0, len(times) - 1): cnt = 0 rf_sum = 0.0 for y in range(0, len(lats)): for x in range(0, len(lons)): if utils.is_inside_polygon(polys, lats[y], lons[x]): cnt = cnt + 1 rf_sum = rf_sum + diff[t, y, x] mean_rf = rf_sum / cnt t_str = ( utils.datetime_utc_to_lk(dt.datetime.strptime(times[t], '%Y-%m-%d_%H:%M:%S'), shift_mins=30)).strftime('%Y-%m-%d %H:%M:%S') output_file.write('%s\t%.4f\n' % (t_str, mean_rf)) kub_rf[output_name].append([t_str, mean_rf]) utils.move_files_with_prefix(temp_dir, '*.txt', output_dir) if curw_db_adapter is not None: station = [Station.CUrW, output_name, output_name, -999, -999, 0, 'Kelani upper basin mean rainfall'] if ext_utils.create_station_if_not_exists(curw_db_adapter, station): logging.info('%s station created' % output_name) logging.info('Pushing data to the db...') ext_utils.push_rainfall_to_db(curw_db_adapter, kub_rf, upsert=curw_db_upsert, name=run_name, source=run_prefix) else: logging.info('curw_db_adapter not available. Unable to push data!')
def create_rf_plots_wrf(nc_f, plots_output_dir, plots_output_base_dir, lon_min=None, lat_min=None, lon_max=None, lat_max=None, filter_threshold=0.05, run_prefix='WRF'): if not all([lon_min, lat_min, lon_max, lat_max]): lon_min, lat_min, lon_max, lat_max = constants.SRI_LANKA_EXTENT variables = ext_utils.extract_variables(nc_f, 'RAINC, RAINNC', lat_min, lat_max, lon_min, lon_max) lats = variables['XLAT'] lons = variables['XLONG'] # cell size is calc based on the mean between the lat and lon points cz = np.round(np.mean(np.append(lons[1:len(lons)] - lons[0: len(lons) - 1], lats[1:len(lats)] - lats[0: len(lats) - 1])), 3) clevs = [0, 1, 2.5, 5, 7.5, 10, 15, 20, 30, 40, 50, 70, 100, 150, 200, 250, 300, 400, 500, 600, 750] cmap = cm.s3pcpn basemap = Basemap(projection='merc', llcrnrlon=lon_min, llcrnrlat=lat_min, urcrnrlon=lon_max, urcrnrlat=lat_max, resolution='h') data = variables['RAINC'] + variables['RAINNC'] logging.info('Filtering with the threshold %f' % filter_threshold) data[data < filter_threshold] = 0.0 variables['PRECIP'] = data prefix = 'wrf_plots' with TemporaryDirectory(prefix=prefix) as temp_dir: t0 = dt.datetime.strptime(variables['Times'][0], '%Y-%m-%d_%H:%M:%S') t1 = dt.datetime.strptime(variables['Times'][1], '%Y-%m-%d_%H:%M:%S') step = (t1 - t0).total_seconds() / 3600.0 inst_precip = ext_utils.get_two_element_average(variables['PRECIP']) cum_precip = ext_utils.get_two_element_average(variables['PRECIP'], return_diff=False) for i in range(1, len(variables['Times'])): time = variables['Times'][i] ts = dt.datetime.strptime(time, '%Y-%m-%d_%H:%M:%S') lk_ts = utils.datetime_utc_to_lk(ts, shift_mins=30) logging.info('processing %s', time) # instantaneous precipitation (hourly) inst_file = os.path.join(temp_dir, 'wrf_inst_' + lk_ts.strftime('%Y-%m-%d_%H:%M:%S')) ext_utils.create_asc_file(np.flip(inst_precip[i - 1], 0), lats, lons, inst_file + '.asc', cell_size=cz) title = { 'label': 'Hourly rf for %s LK' % lk_ts.strftime('%Y-%m-%d_%H:%M:%S'), 'fontsize': 30 } ext_utils.create_contour_plot(inst_precip[i - 1], inst_file + '.png', lat_min, lon_min, lat_max, lon_max, title, clevs=clevs, cmap=cmap, basemap=basemap) if (i * step) % 24 == 0: t = 'Daily rf from %s LK to %s LK' % ( (lk_ts - dt.timedelta(hours=24)).strftime('%Y-%m-%d_%H:%M:%S'), lk_ts.strftime('%Y-%m-%d_%H:%M:%S')) d = int(i * step / 24) - 1 logging.info('Creating images for D%d' % d) cum_file = os.path.join(temp_dir, 'wrf_cum_%dd' % d) if i * step / 24 > 1: cum_precip_24h = cum_precip[i - 1] - cum_precip[i - 1 - int(24 / step)] else: cum_precip_24h = cum_precip[i - 1] ext_utils.create_asc_file(np.flip(cum_precip_24h, 0), lats, lons, cum_file + '.asc', cell_size=cz) ext_utils.create_contour_plot(cum_precip_24h, cum_file + '.png', lat_min, lon_min, lat_max, lon_max, t, clevs=clevs, cmap=cmap, basemap=basemap) gif_file = os.path.join(temp_dir, 'wrf_inst_%dd' % d) images = [os.path.join(temp_dir, 'wrf_inst_' + j.strftime('%Y-%m-%d_%H:%M:%S') + '.png') for j in np.arange(lk_ts - dt.timedelta(hours=24 - step), lk_ts + dt.timedelta(hours=step), dt.timedelta(hours=step)).astype(dt.datetime)] ext_utils.create_gif(images, gif_file + '.gif') logging.info('Creating the zips') utils.create_zip_with_prefix(temp_dir, '*.png', os.path.join(temp_dir, 'pngs.zip')) utils.create_zip_with_prefix(temp_dir, '*.asc', os.path.join(temp_dir, 'ascs.zip')) logging.info('Cleaning up instantaneous pngs and ascs - wrf_inst_*') utils.delete_files_with_prefix(temp_dir, 'wrf_inst_*.png') utils.delete_files_with_prefix(temp_dir, 'wrf_inst_*.asc') logging.info('Copying pngs to ' + plots_output_dir) utils.move_files_with_prefix(temp_dir, '*.png', plots_output_dir) logging.info('Copying ascs to ' + plots_output_dir) utils.move_files_with_prefix(temp_dir, '*.asc', plots_output_dir) logging.info('Copying gifs to ' + plots_output_dir) utils.copy_files_with_prefix(temp_dir, '*.gif', plots_output_dir) logging.info('Copying zips to ' + plots_output_dir) utils.copy_files_with_prefix(temp_dir, '*.zip', plots_output_dir) plots_latest_dir = os.path.join(plots_output_base_dir, 'latest', run_prefix, os.path.basename(plots_output_dir)) # <nfs>/latest/wrf0 .. 3 utils.create_dir_if_not_exists(plots_latest_dir) # todo: this needs to be adjusted to handle the multiple runs logging.info('Copying gifs to ' + plots_latest_dir) utils.copy_files_with_prefix(temp_dir, '*.gif', plots_latest_dir)
def push_wrf_rainfall_to_db(nc_f, curw_db_adapter=None, lon_min=None, lat_min=None, lon_max=None, lat_max=None, run_prefix='WRF', upsert=False, run_name='Cloud-1', station_prefix='wrf'): """ :param run_name: :param nc_f: :param curw_db_adapter: If not none, data will be pushed to the db :param run_prefix: :param lon_min: :param lat_min: :param lon_max: :param lat_max: :param upsert: :return: """ if curw_db_adapter is None: logging.info('curw_db_adapter not available. Unable to push data!') return if not all([lon_min, lat_min, lon_max, lat_max]): lon_min, lat_min, lon_max, lat_max = constants.SRI_LANKA_EXTENT nc_vars = ext_utils.extract_variables(nc_f, ['RAINC', 'RAINNC'], lat_min, lat_max, lon_min, lon_max) lats = nc_vars['XLAT'] lons = nc_vars['XLONG'] prcp = nc_vars['RAINC'] + nc_vars['RAINNC'] times = nc_vars['Times'] diff = ext_utils.get_two_element_average(prcp) width = len(lons) height = len(lats) def random_check_stations_exist(): for _ in range(10): _x = lons[int(random() * width)] _y = lats[int(random() * height)] _name = '%s_%.6f_%.6f' % (station_prefix, _x, _y) _query = {'name': _name} if curw_db_adapter.get_station(_query) is None: logging.debug('Random stations check fail') return False logging.debug('Random stations check success') return True stations_exists = random_check_stations_exist() rf_ts = {} for y in range(height): for x in range(width): lat = lats[y] lon = lons[x] station_id = '%s_%.6f_%.6f' % (station_prefix, lon, lat) name = station_id if not stations_exists: logging.info('Creating station %s ...' % name) station = [Station.WRF, station_id, name, str(lon), str(lat), str(0), "WRF point"] curw_db_adapter.create_station(station) # add rf series to the dict ts = [] for i in range(len(diff)): t = utils.datetime_utc_to_lk(dt.datetime.strptime(times[i], '%Y-%m-%d_%H:%M:%S'), shift_mins=30) ts.append([t.strftime('%Y-%m-%d %H:%M:%S'), diff[i, y, x]]) rf_ts[name] = ts ext_utils.push_rainfall_to_db(curw_db_adapter, rf_ts, source=run_prefix, upsert=upsert, name=run_name)
def extract_metro_colombo(nc_f, wrf_output, wrf_output_base, curw_db_adapter=None, curw_db_upsert=False, run_prefix='WRF', run_name='Cloud-1'): """ extract Metro-Colombo rf and divide area into to 4 quadrants :param wrf_output_base: :param run_name: :param nc_f: :param wrf_output: :param curw_db_adapter: If not none, data will be pushed to the db :param run_prefix: :param curw_db_upsert: :return: """ prefix = 'met_col' lon_min, lat_min, lon_max, lat_max = constants.COLOMBO_EXTENT nc_vars = ext_utils.extract_variables(nc_f, ['RAINC', 'RAINNC'], lat_min, lat_max, lon_min, lon_max) lats = nc_vars['XLAT'] lons = nc_vars['XLONG'] prcp = nc_vars['RAINC'] + nc_vars['RAINNC'] times = nc_vars['Times'] diff = ext_utils.get_two_element_average(prcp) width = len(lons) height = len(lats) output_dir = utils.create_dir_if_not_exists(os.path.join(wrf_output, prefix)) basin_rf = np.mean(diff[0:(len(times) - 1 if len(times) < 24 else 24), :, :]) alpha_file_path = os.path.join(wrf_output_base, prefix + '_alphas.txt') utils.create_dir_if_not_exists(os.path.dirname(alpha_file_path)) with open(alpha_file_path, 'a+') as alpha_file: t = utils.datetime_utc_to_lk(dt.datetime.strptime(times[0], '%Y-%m-%d_%H:%M:%S'), shift_mins=30) alpha_file.write('%s\t%f\n' % (t.strftime('%Y-%m-%d_%H:%M:%S'), basin_rf)) cz = ext_utils.get_mean_cell_size(lats, lons) no_data = -99 divs = (2, 2) div_rf = {} for i in range(divs[0] * divs[1]): div_rf[prefix + str(i)] = [] with TemporaryDirectory(prefix=prefix) as temp_dir: subsection_file_path = os.path.join(temp_dir, 'sub_means.txt') with open(subsection_file_path, 'w') as subsection_file: for tm in range(0, len(times) - 1): t_str = ( utils.datetime_utc_to_lk(dt.datetime.strptime(times[tm], '%Y-%m-%d_%H:%M:%S'), shift_mins=30)).strftime('%Y-%m-%d %H:%M:%S') output_file_path = os.path.join(temp_dir, 'rf_' + t_str.replace(' ', '_') + '.asc') ext_utils.create_asc_file(np.flip(diff[tm, :, :], 0), lats, lons, output_file_path, cell_size=cz, no_data_val=no_data) # writing subsection file x_idx = [round(i * width / divs[0]) for i in range(0, divs[0] + 1)] y_idx = [round(i * height / divs[1]) for i in range(0, divs[1] + 1)] subsection_file.write(t_str) for j in range(len(y_idx) - 1): for i in range(len(x_idx) - 1): quad = j * divs[1] + i sub_sec_mean = np.mean(diff[tm, y_idx[j]:y_idx[j + 1], x_idx[i]: x_idx[i + 1]]) subsection_file.write('\t%.4f' % sub_sec_mean) div_rf[prefix + str(quad)].append([t_str, sub_sec_mean]) subsection_file.write('\n') utils.create_zip_with_prefix(temp_dir, 'rf_*.asc', os.path.join(temp_dir, 'ascs.zip'), clean_up=True) utils.move_files_with_prefix(temp_dir, '*', output_dir) # writing to the database if curw_db_adapter is not None: for i in range(divs[0] * divs[1]): name = prefix + str(i) station = [Station.CUrW, name, name, -999, -999, 0, "met col quadrant %d" % i] if ext_utils.create_station_if_not_exists(curw_db_adapter, station): logging.info('%s station created' % name) logging.info('Pushing data to the db...') ext_utils.push_rainfall_to_db(curw_db_adapter, div_rf, upsert=curw_db_upsert, source=run_prefix, name=run_name) else: logging.info('curw_db_adapter not available. Unable to push data!') return basin_rf
def process(self, *args, **kwargs): config = self.get_config(**kwargs) logging.info('wrf conifg: ' + config.to_json_string()) start_date = config.get('start_date') d03_dir = config.get('wrf_output_dir') d03_sl = os.path.join(d03_dir, 'wrfout_d01_' + start_date + ':00_SL') # create a temp work dir & get a local copy of the d03.._SL temp_dir = utils.create_dir_if_not_exists( os.path.join(config.get('wrf_home'), 'temp_d01')) shutil.copy2(d03_sl, temp_dir) d03_sl = os.path.join(temp_dir, os.path.basename(d03_sl)) lat_min = -3.06107 lon_min = 71.2166 lat_max = 18.1895 lon_max = 90.3315 variables = ext_utils.extract_variables(d03_sl, 'RAINC, RAINNC', lat_min, lat_max, lon_min, lon_max) lats = variables['XLAT'] lons = variables['XLONG'] # cell size is calc based on the mean between the lat and lon points cz = np.round( np.mean( np.append(lons[1:len(lons)] - lons[0:len(lons) - 1], lats[1:len(lats)] - lats[0:len(lats) - 1])), 3) # clevs = 10 * np.array([0.1, 0.5, 1, 2, 3, 5, 10, 15, 20, 25, 30]) # clevs_cum = 10 * np.array([0.1, 0.5, 1, 2, 3, 5, 10, 15, 20, 25, 30, 50, 75, 100]) # norm = colors.BoundaryNorm(boundaries=clevs, ncolors=256) # norm_cum = colors.BoundaryNorm(boundaries=clevs_cum, ncolors=256) # cmap = plt.get_cmap('jet') clevs = [ 0, 1, 2.5, 5, 7.5, 10, 15, 20, 30, 40, 50, 70, 100, 150, 200, 250, 300, 400, 500, 600, 750 ] clevs_cum = clevs norm = None cmap = cm.s3pcpn basemap = Basemap(projection='merc', llcrnrlon=lon_min, llcrnrlat=lat_min, urcrnrlon=lon_max, urcrnrlat=lat_max, resolution='h') filter_threshold = 0.05 data = variables['RAINC'] + variables['RAINNC'] logging.info('Filtering with the threshold %f' % filter_threshold) data[data < filter_threshold] = 0.0 variables['PRECIP'] = data for i in range(1, len(variables['Times'])): time = variables['Times'][i] ts = dt.datetime.strptime(time, '%Y-%m-%d_%H:%M:%S') lk_ts = utils.datetime_utc_to_lk(ts) logging.info('processing %s', time) # instantaneous precipitation (hourly) inst_precip = variables['PRECIP'][i] - variables['PRECIP'][i - 1] inst_file = os.path.join(temp_dir, 'wrf_inst_' + time) title = { 'label': '3Hourly rf for %s LK\n%s UTC' % (lk_ts.strftime('%Y-%m-%d_%H:%M:%S'), time), 'fontsize': 30 } ext_utils.create_contour_plot(inst_precip, inst_file + '.png', lat_min, lon_min, lat_max, lon_max, title, clevs=clevs, cmap=cmap, basemap=basemap, norm=norm) if i % 8 == 0: d = int(i / 8) - 1 logging.info('Creating gif for D%d' % d) gif_file = os.path.join(temp_dir, 'wrf_inst_D01_%dd' % d) images = [ os.path.join( temp_dir, 'wrf_inst_' + i.strftime('%Y-%m-%d_%H:%M:%S') + '.png') for i in np.arange(ts - dt.timedelta(hours=24 - 3), ts + dt.timedelta( hours=3), dt.timedelta( hours=3)).astype(dt.datetime) ] ext_utils.create_gif(images, gif_file + '.gif') # move all the data in the tmp dir to the nfs logging.info('Copying gifs to ' + d03_dir) utils.copy_files_with_prefix(temp_dir, '*.gif', d03_dir) d03_latest_dir = os.path.join(config.get('nfs_dir'), 'latest', os.path.basename(config.get('wrf_home'))) # <nfs>/latest/wrf0 .. 3 utils.create_dir_if_not_exists(d03_latest_dir) # todo: this needs to be adjusted to handle the multiple runs logging.info('Copying gifs to ' + d03_latest_dir) utils.copy_files_with_prefix(temp_dir, '*.gif', d03_latest_dir) logging.info('Cleaning up the dir ' + temp_dir) shutil.rmtree(temp_dir)
def process(self, *args, **kwargs): config = self.get_config(**kwargs) logging.info('wrf conifg: ' + config.to_json_string()) start_date = config.get('start_date') d03_dir = config.get('wrf_output_dir') d03_sl = os.path.join(d03_dir, 'wrfout_d03_' + start_date + ':00_SL') # create a temp work dir & get a local copy of the d03.._SL temp_dir = utils.create_dir_if_not_exists( os.path.join(config.get('wrf_home'), 'temp')) shutil.copy2(d03_sl, temp_dir) d03_sl = os.path.join(temp_dir, os.path.basename(d03_sl)) lat_min = 5.722969 lon_min = 79.52146 lat_max = 10.06425 lon_max = 82.18992 variables = ext_utils.extract_variables(d03_sl, 'RAINC, RAINNC', lat_min, lat_max, lon_min, lon_max) lats = variables['XLAT'] lons = variables['XLONG'] # cell size is calc based on the mean between the lat and lon points cz = np.round( np.mean( np.append(lons[1:len(lons)] - lons[0:len(lons) - 1], lats[1:len(lats)] - lats[0:len(lats) - 1])), 3) # clevs = 10 * np.array([0.1, 0.5, 1, 2, 3, 5, 10, 15, 20, 25, 30]) # clevs_cum = 10 * np.array([0.1, 0.5, 1, 2, 3, 5, 10, 15, 20, 25, 30, 50, 75, 100]) # norm = colors.BoundaryNorm(boundaries=clevs, ncolors=256) # norm_cum = colors.BoundaryNorm(boundaries=clevs_cum, ncolors=256) # cmap = plt.get_cmap('jet') clevs = [ 0, 1, 2.5, 5, 7.5, 10, 15, 20, 30, 40, 50, 70, 100, 150, 200, 250, 300, 400, 500, 600, 750 ] clevs_cum = clevs norm = None norm_cum = None cmap = cm.s3pcpn basemap = Basemap(projection='merc', llcrnrlon=lon_min, llcrnrlat=lat_min, urcrnrlon=lon_max, urcrnrlat=lat_max, resolution='h') filter_threshold = 0.05 data = variables['RAINC'] + variables['RAINNC'] logging.info('Filtering with the threshold %f' % filter_threshold) data[data < filter_threshold] = 0.0 variables['PRECIP'] = data pngs = [] ascs = [] for i in range(1, len(variables['Times'])): time = variables['Times'][i] ts = dt.datetime.strptime(time, '%Y-%m-%d_%H:%M:%S') lk_ts = utils.datetime_utc_to_lk(ts) logging.info('processing %s', time) # instantaneous precipitation (hourly) inst_precip = variables['PRECIP'][i] - variables['PRECIP'][i - 1] inst_file = os.path.join(temp_dir, 'wrf_inst_' + time) title = { 'label': 'Hourly rf for %s LK\n%s UTC' % (lk_ts.strftime('%Y-%m-%d_%H:%M:%S'), time), 'fontsize': 30 } ext_utils.create_asc_file(np.flip(inst_precip, 0), lats, lons, inst_file + '.asc', cell_size=cz) ascs.append(inst_file + '.asc') ext_utils.create_contour_plot(inst_precip, inst_file + '.png', lat_min, lon_min, lat_max, lon_max, title, clevs=clevs, cmap=cmap, basemap=basemap, norm=norm) pngs.append(inst_file + '.png') if i % 24 == 0: t = 'Daily rf from %s LK to %s LK' % ( (lk_ts - dt.timedelta(hours=24)).strftime('%Y-%m-%d_%H:%M:%S'), lk_ts.strftime('%Y-%m-%d_%H:%M:%S')) d = int(i / 24) - 1 logging.info('Creating images for D%d' % d) cum_file = os.path.join(temp_dir, 'wrf_cum_%dd' % d) ext_utils.create_asc_file(np.flip(variables['PRECIP'][i], 0), lats, lons, cum_file + '.asc', cell_size=cz) ascs.append(cum_file + '.asc') ext_utils.create_contour_plot(variables['PRECIP'][i] - variables['PRECIP'][i - 24], cum_file + '.png', lat_min, lon_min, lat_max, lon_max, t, clevs=clevs, cmap=cmap, basemap=basemap, norm=norm_cum) pngs.append(inst_file + '.png') gif_file = os.path.join(temp_dir, 'wrf_inst_%dd' % d) images = [ os.path.join( temp_dir, 'wrf_inst_' + i.strftime('%Y-%m-%d_%H:%M:%S') + '.png') for i in np.arange(ts - dt.timedelta(hours=23), ts + dt.timedelta( hours=1), dt.timedelta( hours=1)).astype(dt.datetime) ] ext_utils.create_gif(images, gif_file + '.gif') logging.info('Creating the zips') utils.create_zip_with_prefix(temp_dir, '*.png', os.path.join(temp_dir, 'pngs.zip')) utils.create_zip_with_prefix(temp_dir, '*.asc', os.path.join(temp_dir, 'ascs.zip')) # utils.create_zipfile(pngs, os.path.join(temp_dir, 'pngs.zip')) # utils.create_zipfile(ascs, os.path.join(temp_dir, 'ascs.zip')) logging.info('Cleaning up instantaneous pngs and ascs - wrf_inst_*') utils.delete_files_with_prefix(temp_dir, 'wrf_inst_*.png') utils.delete_files_with_prefix(temp_dir, 'wrf_inst_*.asc') logging.info('Copying pngs to ' + d03_dir) utils.move_files_with_prefix(temp_dir, '*.png', d03_dir) logging.info('Copying ascs to ' + d03_dir) utils.move_files_with_prefix(temp_dir, '*.asc', d03_dir) logging.info('Copying gifs to ' + d03_dir) utils.copy_files_with_prefix(temp_dir, '*.gif', d03_dir) logging.info('Copying zips to ' + d03_dir) utils.copy_files_with_prefix(temp_dir, '*.zip', d03_dir) d03_latest_dir = os.path.join(config.get('nfs_dir'), 'latest', os.path.basename(config.get('wrf_home'))) # <nfs>/latest/wrf0 .. 3 utils.create_dir_if_not_exists(d03_latest_dir) # todo: this needs to be adjusted to handle the multiple runs logging.info('Copying gifs to ' + d03_latest_dir) utils.copy_files_with_prefix(temp_dir, '*.gif', d03_latest_dir) logging.info('Cleaning up temp dir') shutil.rmtree(temp_dir)
lon_min = 79.52146 lat_max = 10.06425 lon_max = 82.18992 clevs = 10 * np.array([0.1, 0.5, 1, 2, 3, 5, 10, 15, 20, 25, 30, 50, 75, 100]) basemap = Basemap(projection='merc', llcrnrlon=lon_min, llcrnrlat=lat_min, urcrnrlon=lon_max, urcrnrlat=lat_max, resolution='h') norm = colors.BoundaryNorm(boundaries=clevs, ncolors=256) rf_vars = ['RAINC', 'RAINNC', 'SNOWNC', 'GRAUPELNC'] rf_values = utils.extract_variables(nc, rf_vars, lat_min, lat_max, lon_min, lon_max) rf_values['PRECIP'] = rf_values[rf_vars[0]] for i in range(1, len(rf_vars)): rf_values['PRECIP'] = rf_values['PRECIP'] + rf_values[rf_vars[i]] def make_plots(v, out_dir, basemap, start=0, end=-1): start_rf = v['PRECIP'][0] wrfutils.create_dir_if_not_exists(out_dir) for j in range(start, end if end > 0 else len(v['PRECIP'])): out = out_dir + '/' + v['Times'][j] + 'cum.png' if j != 0: utils.create_contour_plot(v['PRECIP'][j] - start_rf, out, lat_min,