data_transforms = { 'test': transforms.Compose([ transforms.ToPILImage(), transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]), } # Image and label directories labels_dir = './ClothingAttributeDataset/labels/' images_dir = './ClothingAttributeDataset/images/' # Load the data image_datasets = {x: ClothingAttributeDataset(labels_dir, images_dir, x, data_transforms[x]) for x in ['test']} dataloaders = {x: DataLoader(image_datasets[x], batch_size=TEST_BATCH_SIZE, shuffle=True) for x in ['test']} dataset_sizes = {x: len(image_datasets[x]) for x in ['test']} main_task = 5 # gender class_names = ['Male', 'Female'] device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") def imshow(inp, title=None): """Imshow for Tensor.""" inp = inp.numpy().transpose((1, 2, 0)) mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) inp = std * inp + mean
transforms.Compose([ transforms.ToPILImage(), transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]), } # Image and label directories labels_dir = './ClothingAttributeDataset/labels/' images_dir = './ClothingAttributeDataset/images/' # Load the data image_datasets = { x: ClothingAttributeDataset(labels_dir, images_dir, x, data_transforms[x]) for x in ['test'] } dataloaders = { x: DataLoader(image_datasets[x], batch_size=TEST_BATCH_SIZE) for x in ['test'] } dataset_sizes = {x: len(image_datasets[x]) for x in ['test']} main_task = 5 # gender auxiliary_task = 20 # skin exposure class_names = ['Male', 'Female'] device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")