def __init__(self, latent_dim=100, nb_rows=28, nb_columns=28, nb_input_channels=1, one_channel_output=True, decay_positive_weights=0, decay_negative_weights=1, decay_weight=1): """ Create a shallow AE with a Non Negativity Constraint on the weights enforced with asymetric weight decay. Arguments: decay_positive_weights: positive float - the weight decay parameter for the positive weights. decay_negative_weights: positive float - the weight decay parameter for the negative weights. decay_weight: positive float - the weight of the whole non negativity cost. """ self.latent_dim = latent_dim self.nb_input_channels = nb_input_channels self.nb_rows = nb_rows self.nb_columns = nb_columns if one_channel_output: self.nb_output_channels = 1 else: self.nb_output_channels = nb_input_channels self.decay_positive_weights = decay_positive_weights self.decay_negative_weights = decay_negative_weights self.decay_weight = decay_weight input_img = Input( shape=(self.nb_rows, self.nb_columns, self.nb_input_channels )) # adapt this if using `channels_first` image data format x = Conv2D(64, (4, 4), strides=(2, 2), padding='same')(input_img) x = LeakyReLU(alpha=0.1)(x) x = Conv2D(128, (4, 4), strides=(2, 2), padding='same')(x) x = BatchNormalization()(x) x = LeakyReLU(alpha=0.1)(x) x = Flatten()(x) x = Dense(1024)(x) x = BatchNormalization()(x) x = LeakyReLU(alpha=0.1)(x) encoded = Dense(self.latent_dim, activation='sigmoid')(x) self.encoder = Model(input_img, encoded, name='encoder') encoded_img = Input(shape=(self.latent_dim, )) x = Dense( self.nb_rows * self.nb_columns * self.nb_output_channels, kernel_regularizer=custom_regularizers.asymmetric_weight_decay( alpha=self.decay_positive_weights, beta=self.decay_negative_weights, lam=self.decay_weight))(encoded_img) x = LeakyReLU(alpha=0.1)(x) decoded = Reshape( (self.nb_rows, self.nb_columns, self.nb_output_channels))(x) self.decoder = Model(encoded_img, decoded, name='decoder') encoded = self.encoder(input_img) decoded = self.decoder(encoded) self.autoencoder = Model(input_img, decoded) self.autoencoder.compile(optimizer='adadelta', loss='mean_squared_error', metrics=['mse'])
def __init__(self, latent_dim=100, nb_rows=28, nb_columns=28, nb_input_channels=1, one_channel_output=True, sparsity_weight=0.1, sparsity_objective=0.1, decay_positive_weights=0, decay_negative_weights=1, decay_weight=1): """ Create a sparse shallow AE with the custom kl divergence regularizer, enforcing weights non negativity with an asymmetric decay. Arguments: sparsity_weight: positive float - the weight of the sparsity cost. sparsity_objective: float between 0 and 1 - the sparsity parameter. decay_positive_weights: positive float - the weight decay parameter for the positive weights. decay_negative_weights: positive float - the weight decay parameter for the negative weights. decay_weight: positive float - the weight of the whole non negativity cost. """ self.latent_dim = latent_dim self.nb_rows=nb_rows self.nb_columns=nb_columns self.nb_input_channels=nb_input_channels if one_channel_output: self.nb_output_channels=1 else: self.nb_output_channels=nb_input_channels self.sparsity_weight = sparsity_weight self.sparsity_objective = sparsity_objective self.decay_positive_weights = decay_positive_weights self.decay_negative_weights = decay_negative_weights self.decay_weight = decay_weight input_img = Input(shape=(self.nb_rows, self.nb_columns, nb_input_channels)) # adapt this if using `channels_first` image data format x = Flatten()(input_img) encoded = Dense(latent_dim, activation='sigmoid', activity_regularizer=custom_regularizers.KL_divergence_sum(beta=self.sparsity_weight, rho=self.sparsity_objective), kernel_regularizer=custom_regularizers.asymmetric_weight_decay(alpha=self.decay_positive_weights, beta=self.decay_negative_weights, lam=self.decay_weight))(x) self.encoder = Model(input_img, encoded, name='encoder') encoded_img = Input(shape=(self.latent_dim,)) x = Dense(self.nb_rows*self.nb_columns*self.nb_output_channels, kernel_regularizer=custom_regularizers.asymmetric_weight_decay(alpha=self.decay_positive_weights, beta=self.decay_negative_weights, lam=self.decay_weight))(encoded_img) x = LeakyReLU(alpha=0.1)(x) decoded = Reshape((self.nb_rows,self.nb_columns,self.nb_output_channels))(x) self.decoder = Model(encoded_img, decoded, name='decoder') encoded = self.encoder(input_img) decoded = self.decoder(encoded) self.autoencoder = Model(input_img, decoded) self.autoencoder.compile(optimizer='adadelta', loss='mean_squared_error', metrics=['mse'])
def __init__(self, latent_dim=100, decay_positive_weights=0, decay_negative_weights=1, decay_weight=1): """ Create a shallow AE with a Non Negativity Constraint on the weights enforced with asymetric weight decay. Arguments: decay_positive_weights: positive float - the weight decay parameter for the positive weights. decay_negative_weights: positive float - the weight decay parameter for the negative weights. decay_weight: positive float - the weight of the whole non negativity cost. """ self.latent_dim = latent_dim self.decay_positive_weights = decay_positive_weights self.decay_negative_weights = decay_negative_weights self.decay_weight = decay_weight input_img = Input(shape=( 28, 28, 1)) # adapt this if using `channels_first` image data format x = Flatten()(input_img) encoded = Dense( latent_dim, activation='sigmoid', kernel_regularizer=custom_regularizers.asymmetric_weight_decay( alpha=self.decay_positive_weights, beta=self.decay_negative_weights, lam=self.decay_weight))(x) self.encoder = Model(input_img, encoded, name='encoder') encoded_img = Input(shape=(self.latent_dim, )) x = Dense(28 * 28)(encoded_img) x = LeakyReLU(alpha=0.1)(x) decoded = Reshape((28, 28, 1))(x) self.decoder = Model(encoded_img, decoded, name='decoder') encoded = self.encoder(input_img) decoded = self.decoder(encoded) self.autoencoder = Model(input_img, decoded) self.autoencoder.compile(optimizer='adadelta', loss='mean_squared_error')