def gray_test(ni): src = cp.push(to_cmuc(np.tile(ni,(1,4)))) dst = cp.dev_matrix_cmf(src.h,src.w) cp.fill(dst,0) cp.image_move(dst,src,128,128,1,-10,-4) res = cp.pull(dst) #set_trace() plt.matshow(res[0:128**2,0].reshape(128,128)) plt.colorbar() plt.show()
def gray_test(ni): src = cp.push(to_cmuc(np.tile(ni, (1, 4)))) dst = cp.dev_matrix_cmf(src.h, src.w) cp.fill(dst, 0) cp.image_move(dst, src, 128, 128, 1, -10, -4) res = cp.pull(dst) #set_trace() plt.matshow(res[0:128**2, 0].reshape(128, 128)) plt.colorbar() plt.show()
def color_test(ni): ts = 128 src = cp.push(to_cmuc(np.tile(ni,(1,4)))) dst = cp.dev_matrix_cmf(ts**2*3,src.w) cp.fill(dst,0) cp.image_move(dst,src,128,ts,4,-10,-4) res = cp.pull(dst) plt.matshow(res[0:ts**2,0].reshape(ts,ts), cmap = plt.cm.bone_r) plt.matshow(res[ts**2:2*ts**2,0].reshape(ts,ts), cmap = plt.cm.bone_r) plt.matshow(res[2*ts**2:3*ts**2,0].reshape(ts,ts), cmap = plt.cm.bone_r) plt.show()
def setMiniBatch(self, mb, dst_layer): self.sampleset_ = mb self.sampleset = cp.dev_tensor_uc_cm(self.sampleset_.copy('F')) shift = np.random.randint(-self.maxmov,self.maxmov+1, 2).astype('int32') cp.image_move(dst_layer,self.sampleset,self.src_size, self.dst_size, self.src_num_maps, shift[0],shift[1]) if self.noise_std != 0: cp.add_rnd_normal(dst_layer,self.noise_std) if self.norm: self.norm(dst_layer) self.sampleset.dealloc() self.sampleset = dst_layer.copy()
def color_test(ni): ts = 128 src = cp.push(to_cmuc(np.tile(ni, (1, 4)))) dst = cp.dev_matrix_cmf(ts**2 * 3, src.w) cp.fill(dst, 0) cp.image_move(dst, src, 128, ts, 4, -10, -4) res = cp.pull(dst) plt.matshow(res[0:ts**2, 0].reshape(ts, ts), cmap=plt.cm.bone_r) plt.matshow(res[ts**2:2 * ts**2, 0].reshape(ts, ts), cmap=plt.cm.bone_r) plt.matshow(res[2 * ts**2:3 * ts**2, 0].reshape(ts, ts), cmap=plt.cm.bone_r) plt.show()
def setMiniBatch(self, mb, dst_layer): self.sampleset_ = mb self.sampleset = cp.dev_tensor_uc_cm(self.sampleset_.copy('F')) shift = np.random.randint(-self.maxmov, self.maxmov + 1, 2).astype('int32') cp.image_move(dst_layer, self.sampleset, self.src_size, self.dst_size, self.src_num_maps, shift[0], shift[1]) if self.noise_std != 0: cp.add_rnd_normal(dst_layer, self.noise_std) if self.norm: self.norm(dst_layer) self.sampleset.dealloc() self.sampleset = dst_layer.copy()