示例#1
0
    def run(self):
		
        while True:
            frame = cv.QueryFrame( self.capture)
            
			# Run the cam-shift
            if self.track_window and is_rect_nonzero(self.track_window):
                crit = ( cv.CV_TERMCRIT_EPS | cv.CV_TERMCRIT_ITER, 10, 1)
                (iters, (area, value, rect), track_box) = cv.CamShift(backproject, self.track_window, crit)
                self.track_window = rect

            # If mouse is pressed, highlight the current selected rectangle
            # and recompute the histogram

            if self.drag_start and is_rect_nonzero(self.selection):
				sub = cv.GetSubRect(frame, self.selection)
				save = cv.CloneMat(sub)
				cv.ConvertScale(frame, frame, 0.5)
				cv.Copy(save, sub)
				x,y,w,h = self.selection
				cv.Rectangle(frame, (x,y), (x+w,y+h), (255,255,255))

				sel = cv.GetSubRect(self.hue, self.selection )
				cv.CalcArrHist( [sel], hist, 0)
				(_, max_val, _, _) = cv.GetMinMaxHistValue( hist)
				if max_val != 0:
					cv.ConvertScale(hist.bins, hist.bins, 255. / max_val)        
				elif self.track_window and is_rect_nonzero(self.track_window):
					cv.EllipseBox( frame, track_box, cv.CV_RGB(255,0,0), 3, cv.CV_AA, 0 )		
	   	    cv.ShowImage("Output",frame)
	   	   	cv.WaitKey(0)
示例#2
0
    def run(self):
        hist = cv.CreateHist([180], cv.CV_HIST_ARRAY, [(0, 180)], 1)
        HOST, PORT = 'localhost', 5000
        sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
        sock.connect((HOST, PORT))
        while not self.quit:
            frame = cv.QueryFrame(self.capture)
            track_box = None
            self.update_hue(frame)

            # Compute back projection
            backproject = cv.CreateImage(cv.GetSize(frame), 8, 1)
            cv.CalcArrBackProject([self.hue], backproject, hist)
            if self.track_window and is_rect_nonzero(self.track_window):
                camshift = cv.CamShift(backproject, self.track_window,
                                       STOP_CRITERIA)
                (iters, (area, value, rect), track_box) = camshift
                self.track_window = rect

            if self.drag_start and is_rect_nonzero(self.selection):
                self.draw_mouse_drag_area(frame)
                self.recompute_histogram(hist)
            elif self.track_window and is_rect_nonzero(self.track_window):
                cv.EllipseBox(frame, track_box, cv.CV_RGB(0, 255, 255), 3,
                              cv.CV_AA, 0)

            if track_box:
                self.update_message(track_box)
                sock.send(json.dumps(self.message) + "\n")
            self.draw_target(frame, track_box)
            self.update_windows(frame, backproject, hist)
            self.handle_keyboard_input()
            track_box = None
示例#3
0
    def run(self):
        hist = cv.CreateHist([180], cv.CV_HIST_ARRAY, [(0, 180)], 1)
        backproject_mode = False
        while True:
            frame = cv.QueryFrame(self.capture)

            # Convert to HSV and keep the hue
            hsv = cv.CreateImage(cv.GetSize(frame), 8, 3)
            cv.CvtColor(frame, hsv, cv.CV_BGR2HSV)
            self.hue = cv.CreateImage(cv.GetSize(frame), 8, 1)
            print(self.hue)
            cv.Split(hsv, self.hue, None, None, None)

            # Compute back projection
            backproject = cv.CreateImage(cv.GetSize(frame), 8, 1)

            # Run the cam-shift
            cv.CalcArrBackProject([self.hue], backproject, hist)
            if self.track_window and is_rect_nonzero(self.track_window):
                crit = (cv.CV_TERMCRIT_EPS | cv.CV_TERMCRIT_ITER, 10, 1)
                (iters, (area, value, rect),
                 track_box) = cv.CamShift(backproject, self.track_window, crit)
                self.track_window = rect

            # If mouse is pressed, highlight the current selected rectangle
            # and recompute the histogram

            if self.drag_start and is_rect_nonzero(self.selection):
                sub = cv.GetSubRect(frame, self.selection)
                save = cv.CloneMat(sub)
                cv.ConvertScale(frame, frame, 0.5)
                cv.Copy(save, sub)
                x, y, w, h = self.selection
                cv.Rectangle(frame, (x, y), (x + w, y + h), (255, 255, 255))

                sel = cv.GetSubRect(self.hue, self.selection)
                cv.CalcArrHist([sel], hist, 0)
                (_, max_val, _, _) = cv.GetMinMaxHistValue(hist)
                if max_val != 0:
                    cv.ConvertScale(hist.bins, hist.bins, 255. / max_val)
            elif self.track_window and is_rect_nonzero(self.track_window):
                cv.EllipseBox(frame, track_box, cv.CV_RGB(255, 0, 0), 3,
                              cv.CV_AA, 0)

            if not backproject_mode:
                #frame=cv.Flip(frame)
                cv.ShowImage("CamShiftDemo", frame)
            else:
                cv.ShowImage("CamShiftDemo", backproject)
            cv.ShowImage("Histogram", self.hue_histogram_as_image(hist))

            c = cv.WaitKey(7)
            if c == 27:
                break
            elif c == ord("b"):
                backproject_mode = not backproject_mode
示例#4
0
    def process_rgb(self, dev, data, timestamp):
        #global keep_running
        # get an opencv version of video_cv data
        frame = frame_convert.video_cv(data)
        frame_size = cv.GetSize(frame)

        # Convert to HSV and keep the hue
        hsv = cv.CreateImage(frame_size, 8, 3)
        cv.CvtColor(frame, hsv, cv.CV_BGR2HSV)
        self.hue = cv.CreateImage(frame_size, 8, 1)

        # split the image into different hues
        cv.Split(hsv, self.hue, None, None, None)

        # Compute back projection
        # Run the cam-shift
        backproject = cv.CreateImage(frame_size, 8, 1)
        cv.CalcArrBackProject([self.hue], backproject, self.hist)

        # if we have a tracking window... shift it
        # Track_window => (rectangle of approx hue)
        if self.track_window and is_rect_nonzero(self.track_window):
            # set criteria for backproject iter
            # compute back projections - shifting rectangle in
            # appropriate direction
            crit = (cv.CV_TERMCRIT_EPS | cv.CV_TERMCRIT_ITER, 10, 1)
            (iters, (area, value, rect),
             self.track_box) = cv.CamShift(backproject, self.track_window,
                                           crit)
            # set track_window to the newly selected rectangle
            self.track_window = rect

        # if a section is being selected - set the histogram
        if self.debug:
            sel = self.dbg_rgb.check_for_selection(self.track_window,
                                                   self.track_box)

            # sets the histogram if there is a selection
            if sel: self.set_hist(frame, sel)

            self.dbg_rgb.update(frame)
            #if self.track_window:
            #  self.dbg_rgb.add_box(self.track_box)

            self.dbg_rgb.render()

        # Bail out if ESC is pushed
        key = cv.WaitKey(3)
        char = chr(key & 255)

        # k is for KILL
        if char == 'k':
            self.keep_running = False
        else:
            self.curr_classifier().respond_to_key(char)
示例#5
0
    def do_camshift(self, cv_image):
        """ Get the image size """
        image_size = cv.GetSize(cv_image)
        image_width = image_size[0]
        image_height = image_size[1]
        
        """ Convert to HSV and keep the hue """
        hsv = cv.CreateImage(image_size, 8, 3)
        cv.CvtColor(cv_image, hsv, cv.CV_BGR2HSV)
        self.hue = cv.CreateImage(image_size, 8, 1)
        cv.Split(hsv, self.hue, None, None, None)

        """ Compute back projection """
        backproject = cv.CreateImage(image_size, 8, 1)

        """ Run the cam-shift algorithm """
        cv.CalcArrBackProject( [self.hue], backproject, self.hist )
        if self.track_window and is_rect_nonzero(self.track_window):
            crit = ( cv.CV_TERMCRIT_EPS | cv.CV_TERMCRIT_ITER, 10, 1)
            (iters, (area, value, rect), track_box) = cv.CamShift(backproject, self.track_window, crit)
            self.track_window = rect
     
        """ If mouse is pressed, highlight the current selected rectangle
            and recompute the histogram """

        if self.drag_start and is_rect_nonzero(self.selection):
            sub = cv.GetSubRect(cv_image, self.selection)
            save = cv.CloneMat(sub)
            cv.ConvertScale(cv_image, cv_image, 0.5)
            cv.Copy(save, sub)
            x,y,w,h = self.selection
            cv.Rectangle(cv_image, (x,y), (x+w,y+h), (255,255,255))

            sel = cv.GetSubRect(self.hue, self.selection )
            cv.CalcArrHist( [sel], self.hist, 0)
            (_, max_val, _, _) = cv.GetMinMaxHistValue(self.hist)
            if max_val != 0:
                cv.ConvertScale(self.hist.bins, self.hist.bins, 255. / max_val)
        elif self.track_window and is_rect_nonzero(self.track_window):
            cv.EllipseBox( cv_image, track_box, cv.CV_RGB(255,0,0), 3, cv.CV_AA, 0 )
            
            roi = RegionOfInterest()
            roi.x_offset = int(min(image_width, max(0, track_box[0][0] - track_box[1][0] / 2)))
            roi.y_offset = int(min(image_height, max(0, track_box[0][1] - track_box[1][1] / 2)))
            roi.width = int(track_box[1][0])
            roi.height = int(track_box[1][1])
            self.ROI.publish(roi)

        cv.ShowImage("Histogram", self.hue_histogram_as_image(self.hist))
        
        if not self.backproject_mode:
            return cv_image
        else:
            return backproject
    def cameraImageCallback( self, rosImage ):
        
        if rosImage.encoding == "rgb8" or rosImage.encoding == "bgr8":
            
            # Create an OpenCV image to process the data
            curImage = cv.CreateImageHeader( ( rosImage.width, rosImage.height ), cv.IPL_DEPTH_8U, 3 )
            cv.SetData( curImage, rosImage.data, rosImage.step )
            
            curImageGray = cv.CreateImage( ( rosImage.width, rosImage.height ), cv.IPL_DEPTH_8U, 1 )
            
            if rosImage.encoding == "bgr8":
                cv.CvtColor( curImage, curImageGray, cv.CV_BGR2GRAY )
            else:
                cv.CvtColor( curImage, curImageGray, cv.CV_RGB2GRAY )
            
            # Look for optical flow between this image and the last one
            self.opticalFlowX, self.opticalFlowY = self.opticalFlowFilter.calcOpticalFlow( curImageGray )
            
            # Draw the optical flow if it's available
            if self.opticalFlowX != None and self.opticalFlowY != None:

                lineColor = cv.CV_RGB( 0, 255, 0 )
            
                blockCentreY = self.OPTICAL_FLOW_BLOCK_HEIGHT / 2
                for y in range( self.opticalFlowX.shape[ 0 ] ):
                
                    blockCentreX = self.OPTICAL_FLOW_BLOCK_WIDTH / 2
                    for x in range( self.opticalFlowX.shape[ 1 ] ):
                        
                        endX = blockCentreX + cv.Get2D( self.opticalFlowX, y, x )[ 0 ]
                        endY = blockCentreY + cv.Get2D( self.opticalFlowY, y, x )[ 0 ]
                        
                        cv.Line( curImage, ( int( blockCentreX ), int( blockCentreY ) ),
                            ( int( endX ), int( endY ) ), lineColor )    
                        
                        blockCentreX += self.OPTICAL_FLOW_BLOCK_WIDTH
                        
                    blockCentreY += self.OPTICAL_FLOW_BLOCK_HEIGHT    

            # Save the image
            imageBGR = cv.CreateImage( ( rosImage.width, rosImage.height ), cv.IPL_DEPTH_8U, 3 )
            cv.CvtColor( curImage, imageBGR, cv.CV_RGB2BGR )
            cv.SaveImage( "/home/abroun/VideoTemp/frame{0:05}.png".format( self.imageIdx ), imageBGR )
            self.imageIdx += 1

            self.lastImage = curImage
            return

            # Use CAMShift to track the gripper
            gripperProbabilityImage = None
            if self.gripperHistogram != None and self.gripperTrackWindow != None:
                
                imageRGB = cv.CloneImage( curImage )
                    
                r_plane = cv.CreateMat( imageRGB.height, imageRGB.width, cv.CV_8UC1 )
                g_plane = cv.CreateMat( imageRGB.height, imageRGB.width, cv.CV_8UC1 )
                b_plane = cv.CreateMat( imageRGB.height, imageRGB.width, cv.CV_8UC1 )
                cv.Split( imageRGB, r_plane, g_plane, b_plane, None )
                planes = [ r_plane, g_plane, b_plane ]
                
                backproject = cv.CreateImage(cv.GetSize(imageRGB), 8, 1)

                # Run the cam-shift
                try:
                    cv.CalcArrBackProject( planes, backproject, self.gripperHistogram )
                except e:
                    print "Got", e
                    print "self.gripperHistogram =", self.gripperHistogram
                
                if self.gripperTrackWindow[ 2 ] > 0 and self.gripperTrackWindow[ 3 ] > 0:
                    crit = ( cv.CV_TERMCRIT_EPS | cv.CV_TERMCRIT_ITER, 10, 1)
                    (iters, (area, value, rect), track_box) = cv.CamShift(backproject, self.gripperTrackWindow, crit)
                    self.gripperTrackWindow = rect
                
                #print self.gripperTrackWindow
                
                if self.checkShowGripperProbability.get_active():
                    #cv.Threshold( backproject, backproject, 1, 255, cv.CV_THRESH_BINARY )
                    cv.Threshold( backproject, backproject, 128, 255, cv.CV_THRESH_TOZERO )
                    
                    cv.CvtColor( backproject, imageRGB, cv.CV_GRAY2RGB )
                    gripperProbabilityImage = imageRGB
            
            # Display the image
            if gripperProbabilityImage != None:
                self.cameraImagePixBuf = gtk.gdk.pixbuf_new_from_data( 
                    gripperProbabilityImage.tostring(), 
                    gtk.gdk.COLORSPACE_RGB,
                    False,
                    8,
                    gripperProbabilityImage.width,
                    gripperProbabilityImage.height,
                    gripperProbabilityImage.width*3 )
            else:
                self.cameraImagePixBuf = gtk.gdk.pixbuf_new_from_data( 
                    rosImage.data, 
                    gtk.gdk.COLORSPACE_RGB,
                    False,
                    8,
                    rosImage.width,
                    rosImage.height,
                    rosImage.step )
                
            # Resize the drawing area if necessary
            if self.dwgCameraImage.get_size_request() != ( rosImage.width, rosImage.height ):
                self.dwgCameraImage.set_size_request( rosImage.width, rosImage.height )

            self.dwgCameraImage.queue_draw()
            self.lastImage = curImage
            
            # Check to see if we did everything fast enough
            #if self.dataBuffersSetup:
                #testSampleIdx = self.curSampleIdx
                
                #if self.opticalFlowSampleIdx == None:
                    #self.opticalFlowSampleIdx = testSampleIdx
                #else:
                    ## We expect the sample idx to have advanced by 1 since we were last here
                    #sampleIdxDiff = testSampleIdx - self.opticalFlowSampleIdx
                    #if sampleIdxDiff > 1:
                        #print "Missed {0} samples".format( sampleIdxDiff - 1 )
                    #elif sampleIdxDiff < 1:
                        #print "Not sampling fast enough"
                    
                    #self.opticalFlowSampleIdx = testSampleIdx

        else:
            rospy.logerr( "Unhandled image encoding - " + rosImage.encoding )
    def OnIdle( self, ):
        """Request refresh of the context whenever idle.
        track, get position, update camera, then redraw"""
        hist = cv.CreateHist([180], cv.CV_HIST_ARRAY, [(0,180)], 1 )
        backproject_mode = False
        while True:
            frame = cv.QueryFrame(self.capture)

            # Convert to HSV and keep the hue
            hsv = cv.CreateImage(cv.GetSize(frame), 8, 3)
            cv.CvtColor(frame, hsv, cv.CV_BGR2HSV)
            self.hue = cv.CreateImage(cv.GetSize(frame), 8, 1)
            cv.Split(hsv, self.hue, None, None, None)

            # Compute back projection
            backproject = cv.CreateImage(cv.GetSize(frame), 8, 1)

            # Run the cam-shift
            cv.CalcArrBackProject( [self.hue], backproject, hist )
            if self.track_window and is_rect_nonzero(self.track_window):
                crit = ( cv.CV_TERMCRIT_EPS | cv.CV_TERMCRIT_ITER, 10, 1)
                (iters, (area, value, rect), track_box) = cv.CamShift(backproject, self.track_window, crit)
                self.track_window = rect

            # If mouse is pressed, highlight the current selected rectangle
            # and recompute the histogram

            if self.drag_start and is_rect_nonzero(self.selection):
                sub = cv.GetSubRect(frame, self.selection)
                save = cv.CloneMat(sub)
                cv.ConvertScale(frame, frame, 0.5)
                cv.Copy(save, sub)
                x,y,w,h = self.selection
                cv.Rectangle(frame, (x,y), (x+w,y+h), (0,0,255))

                sel = cv.GetSubRect(self.hue, self.selection )
                cv.CalcArrHist( [sel], hist, 0)
                (_, max_val, _, _) = cv.GetMinMaxHistValue( hist)
                if max_val != 0:
                    cv.ConvertScale(hist.bins, hist.bins, 255. / max_val)
            elif self.track_window and is_rect_nonzero(self.track_window):
                cv.EllipseBox(frame, track_box, cv.CV_RGB(255,0,0), 3, cv.CV_AA, 0 )

# find centroid coordinate (x,y) and area (z)
                selection_centroid = track_box[0]
                global xposition
                xposition = selection_centroid[0]
                global yposition
                yposition = selection_centroid[1]
                width_height = track_box[1]


# writes output of coordinates to seed file if needed
                # with open('seed.txt', 'a') as f:
                #     value = (xposition, yposition)
                #     s = str(value) + '\n'
                #     f.write(s)
                #     # f.write('end_of_session')
                # f.close()

# print outs
                print "x: " + str(xposition)
                print "y: " + str(yposition)
                selection_area = width_height[0]*width_height[1]
                # print "The width is: " + str(width_height[0]) + " The height is: " + str(width_height[1])
                # print "centroid is: " + str(selection_centroid)
                # return "centroid is: " + str(selection_centroid)
                print "area: " + str(selection_area)
                # return "area is: " + str(selection_area)

            if not backproject_mode:
                cv.ShowImage( "CamShiftDemo", frame )
            else:
                cv.ShowImage( "CamShiftDemo", backproject)
            cv.ShowImage( "Histogram", self.hue_histogram_as_image(hist))

            c = cv.WaitKey(10)
            if c == 27: # escape key
                break
            elif c == ord("b"): # show backproject mode with "b" key
                backproject_mode = not backproject_mode

        self.triggerRedraw(1)        
        return 1
def compute_camshift_centroids(img, selection, hist):
    # capture = cv.CaptureFromCAM(0)
    # frame = cv.QueryFrame(capture)

    # isolate_hue
    # Convert to HSV and keep the hue
    hsv = cv.CreateImage(cv.GetSize(img), 8, 3)
    cv.CvtColor(img, hsv, cv.CV_BGR2HSV)
    hue = cv.CreateImage(cv.GetSize(img), 8, 1)
    cv.Split(hsv, hue, None, None, None)
    # end isolate_hue

    # Compute back projection
    backproject = cv.CreateImage(cv.GetSize(img), 8, 1)
    # end compute back projection

    # highlight the current selected rectangle and recompute the histogram
    # w = xmax - xmin
    # h = ymax - ymax
    # xmin,ymin,w,h = selection
    #cv.Rectangle(img, (selection[0],selection[1]), (selection[2], selection[3]), (0,0,255))
    # end highlight

    # Run the camshift
    cv.CalcArrBackProject([hue], backproject, hist)
    # end run camshift

    # draw ellipse
    """"
    print "selection is" + str(selection)
    if selection:
    #and is_rect_nonzero(selection):
        # (iteration criteria, max, min)
        crit = ( cv.CV_TERMCRIT_EPS | cv.CV_TERMCRIT_ITER, 10, 1)
        (iters, (area, value, rect), track_box) = cv.CamShift(backproject, selection, crit)
        selection = rect

        # treats selection as independent array
        sel = cv.GetSubRect(hue, selection)
        # calculate histogram for array
        cv.CalcArrHist( [sel], hist, 0)
        (_, max_val, _, _) = cv.GetMinMaxHistValue( hist)
        if max_val != 0:
            #cv.ConvertScale(src, dst, scale=1.0, shift=0.0) 
            cv.ConvertScale(hist.bins, hist.bins, 255. / max_val)
    elif selection:
    """
    crit = (cv.CV_TERMCRIT_EPS | cv.CV_TERMCRIT_ITER, 10, 1)
    (iters, (area, value, rect),
     track_box) = cv.CamShift(backproject, selection, crit)

    #and is_rect_nonzero(selection):
    #cv.EllipseBox(img, track_box, cv.CV_RGB(255,0,0), 3, cv.CV_AA, 0 )
    # end draw ellipse

    # find centroid coordinate (x,y) and area (z)
    selection_centroid = track_box[0]
    xposition = selection_centroid[0]
    yposition = selection_centroid[1]
    width_height = track_box[1]
    #print selection
    rect = (int(xposition - width_height[0] / float(2)),
            int(yposition - width_height[1] / float(2)), int(width_height[0]),
            int(width_height[1]))
    #print rect
    # selection_area = width_height[0]*width_height[1]
    face_centroid_camshift = (xposition, yposition)
    if not is_rect_nonzero(rect):
        return None, None
    return face_centroid_camshift, rect
def camshift_track(roi_selection, img):
    """ setup_camshift:
        - is_rect_nonzero(r)
        - hue_histogram_as_image(hist)
        - making_selection(roi_selection)
        - create_hist()
        - placeholder()

    compute_camshift_centroid:
        - isolate_hue
        - compute_back_projection
        - recompute_histogram(roi_selection)
        - run_camshift
        - draw ellipse
        - find_centroid(track_box)
        - show_hist
"""

    # setup_camshift
    def is_rect_nonzero(r):
        (_, _, w, h) = r
        return (w > 0) and (h > 0)

    def hue_histogram_as_image(hist):
        """ Returns representation of a hue histogram """
        histimg_hsv = cv.CreateImage((320, 200), 8, 3)
        mybins = cv.CloneMatND(hist.bins)
        cv.Log(mybins, mybins)

        (_, hi, _, _) = cv.MinMaxLoc(mybins)
        cv.ConvertScale(mybins, mybins, 255. / hi)

        w, h = cv.GetSize(histimg_hsv)
        hdims = cv.GetDims(mybins)[0]
        for x in range(w):
            xh = (180 * x) / (w - 1)  # hue sweeps from 0-180 across the image
            val = int(mybins[int(hdims * x / w)] * h / 255)
            cv.Rectangle(histimg_hsv, (x, 0), (x, h - val), (xh, 255, 64), -1)
            cv.Rectangle(histimg_hsv, (x, h - val), (x, h), (xh, 255, 255), -1)

        histimg = cv.CreateImage((320, 200), 8, 3)
        cv.CvtColor(histimg_hsv, histimg, cv.CV_HSV2BGR)

        return histimg

# making_selection
# print roi_selection[0]
# print roi_selection[1]

    point1 = roi_selection[0]
    point2 = roi_selection[1]
    xmin = point1[0]
    ymin = point1[1]
    xmax = point2[0]
    ymax = point2[1]
    widthx = xmax - xmin
    heighty = ymax - ymin

    selection = (xmin, ymin, widthx, heighty)
    # end of making_selection

    # create_hist()
    hist = cv.CreateHist([180], cv.CV_HIST_ARRAY, [(0, 180)], 1)
    # end of create_hist

    # placeholder()
    backproject_mode = False
    # end of placeholder

    while True:
        # capture = cv.CaptureFromCAM(0)
        # frame = cv.QueryFrame(capture)

        # isolate_hue
        # Convert to HSV and keep the hue
        hsv = cv.CreateImage(cv.GetSize(frame), 8, 3)
        cv.CvtColor(frame, hsv, cv.CV_BGR2HSV)
        hue = cv.CreateImage(cv.GetSize(frame), 8, 1)
        cv.Split(hsv, hue, None, None, None)
        # end isolate_hue

        # Compute back projection
        backproject = cv.CreateImage(cv.GetSize(frame), 8, 1)
        # end compute back projection

        # highlight the current selected rectangle and recompute the histogram
        w = xmax - xmin
        h = ymax - ymax
        xmin, ymin, w, h = selection
        cv.Rectangle(frame, (xmin, ymin), (xmax, ymax), (0, 0, 255))
        # end highlight

        # Run the camshift
        cv.CalcArrBackProject([hue], backproject, hist)
        # end run camshift

        # draw ellipse
        print "selection is" + str(selection)
        if selection and is_rect_nonzero(selection):
            crit = (cv.CV_TERMCRIT_EPS | cv.CV_TERMCRIT_ITER, 10, 1)
            (iters, (area, value, rect),
             track_box) = cv.CamShift(backproject, selection, crit)
            selection = rect

            sel = cv.GetSubRect(hue, selection)
            cv.CalcArrHist([sel], hist, 0)
            (_, max_val, _, _) = cv.GetMinMaxHistValue(hist)
            if max_val != 0:
                cv.ConvertScale(hist.bins, hist.bins, 255. / max_val)
        elif selection and is_rect_nonzero(selection):
            cv.EllipseBox(frame, track_box, cv.CV_RGB(255, 0, 0), 3, cv.CV_AA,
                          0)
            # end draw ellipse

            # find centroid coordinate (x,y) and area (z)
            selection_centroid = track_box[0]
            xposition = selection_centroid[0]
            yposition = selection_centroid[1]
            width_height = track_box[1]
            # selection_area = width_height[0]*width_height[1]
            face_centroid_camshift = (xposition, yposition)
            # return face_centroid_camshift
# end find centroid

# show hist
        if backproject_mode:
            # cv.ShowImage( "CamShiftDemo", backproject)
            cv.ShowImage("Histogram", self.hue_histogram_as_image(hist))


# end show hist

    print "I made it this far"
    # print face_centroid_camshift
    return face_centroid_camshift