import os import sys import json from androidhelper.sl4a import Android import glob import time import numpy as np import urllib import cv as cv2 import numpy as np import cv as cv2 #from PIL import Image as img #Initialize Android droid = Android() faceCascade = cv2.CascadeClassifier("/sdcard/cas.xml") import subprocess def draw_rectangle(img, rect): (x, y, w, h) = rect cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2) def draw_text(img, text, x, y): cv2.putText(img, text, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.5, (0, 255, 0), 2) def detect_face(path, layout): image = cv2.imread(path) height, width = image.shape[:2]
# Face Recognition # Importing the libraries import cv as cv2 # Loading the cascades face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml') # Defining a function that will do the detections def detect(gray, frame): faces = face_cascade.detectMultiScale(gray, 1.3, 5) for (x, y, w, h) in faces: cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 2) roi_gray = gray[y:y + h, x:x + w] roi_color = frame[y:y + h, x:x + w] eyes = eye_cascade.detectMultiScale(roi_gray, 1.1, 3) for (ex, ey, ew, eh) in eyes: cv2.rectangle(roi_color, (ex, ey), (ex + ew, ey + eh), (0, 255, 0), 2) return frame # Doing some Face Recognition with the webcam video_capture = cv2.VideoCapture(0) while True: _, frame = video_capture.read() gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) canvas = detect(gray, frame) cv2.imshow('Video', canvas) if cv2.waitKey(1) & 0xFF == ord('q'):
import cv as cv import numpy as np from helpers import butter_bandpass_filter from helpers import detect_face from helpers import feature_extraction from scipy.interpolate import interp1d from sklearn.decomposition import PCA # Load Video cap = cv.VideoCapture('somevideo.mp4') if (cap.isOpened()== False): print("Error opening video stream or file") face_cascade = cv.CascadeClassifier() if not face_cascade.load('./haarcascade_frontalface_alt.xml'): print('--(!)Error loading face cascade') exit(0) feature_params = dict( maxCorners = 100, qualityLevel = 0.3, minDistance = 7, blockSize = 7 ) # Parameters for lucas kanade optical flow lk_params = dict( winSize = (15,15), maxLevel = 2, criteria = (cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 0.03)) # First frame
# Start the camera for interactive image capture cam_cap = '/sdcard/capture.jpg' droid.cameraInteractiveCapturePicture(cam_cap) # Resize the image for faster processing img = Image.open(cam_cap) reduced_percent = 0.1 out = img.resize([int(reduced_percent * s) for s in img.size]) imagePath = "/sdcard/image.jpg" out.save(imagePath) sleep(3) # Set the haarcascade file path cascPath = "/sdcard/haarcascade_frontalface_default.xml" # Create the haar cascade faceCascade = cv2.CascadeClassifier(cascPath) # Read the image image = cv2.imread(imagePath) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Detect faces in the image faces = faceCascade.detectMultiScale(gray, scaleFactor=1.2, minNeighbors=5, minSize=(30, 30), flags=cv2.cv.CV_HAAR_SCALE_IMAGE) print("Found {0} faces!".format(len(faces))) # Draw a rectangle around the faces
import cv import time import numpy as np cv_car = cv.CascadeClassifier( r'C:\Users\DEBIPRASAD\Desktop\Projetc Work\ComputerVision-Projects-master\CarPedestrianDetection\cascades\haarcascade_car.xml' ) capture = cv.VideoCapture( r'C:\Users\DEBIPRASAD\Desktop\Projetc Work\ComputerVision-Projects-master\CarPedestrianDetection\files\cars.avi' ) while capture.isOpened(): response, frame = capture.read() if response: gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY) cars = cv_car.detectMultiScale(gray, 1.2, 3) for (x, y, w, h) in cars: cv.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 0), 3) cv.imshow('cars', frame) if cv.waitkey(1) & 0xFF == ord('q'): break else: break capture.release() cv.destroyAllWindows()