示例#1
0
def threshold_image():
    """ runs the image processing in order to create a 
        black and white thresholded image out of D.image
        into D.threshed_image.
    """
    # get D so that we can change values in it
    global D

    # Use OpenCV to split the image up into channels, saving them in gray images
    cv.Split(D.image, D.blue, D.green, D.red, None)

    # This line creates a hue-saturation-value image
    cv.CvtColor(D.image, D.hsv, cv.CV_RGB2HSV)
    cv.Split(D.hsv, D.hue, D.sat, D.val, None)

    # Here is how OpenCV thresholds the images based on the slider values:
    cv.InRangeS(D.red, D.thresholds["low_red"], D.thresholds["high_red"],
                D.red_threshed)
    cv.InRangeS(D.blue, D.thresholds["low_blue"], D.thresholds["high_blue"],
                D.blue_threshed)
    cv.InRangeS(D.green, D.thresholds["low_green"], D.thresholds["high_green"],
                D.green_threshed)
    cv.InRangeS(D.hue, D.thresholds["low_hue"], D.thresholds["high_hue"],
                D.hue_threshed)
    cv.InRangeS(D.sat, D.thresholds["low_sat"], D.thresholds["high_sat"],
                D.sat_threshed)
    cv.InRangeS(D.val, D.thresholds["low_val"], D.thresholds["high_val"],
                D.val_threshed)

    # Multiply all the thresholded images into one "output" image, D.threshed_image
    cv.Mul(D.red_threshed, D.green_threshed, D.threshed_image)
    cv.Mul(D.threshed_image, D.blue_threshed, D.threshed_image)
    cv.Mul(D.threshed_image, D.hue_threshed, D.threshed_image)
    cv.Mul(D.threshed_image, D.sat_threshed, D.threshed_image)
    cv.Mul(D.threshed_image, D.val_threshed, D.threshed_image)
示例#2
0
    def create_image(self):

        #Find the size of the image

        #Create images for each channel
        blue = cv.CreateImage(self.size, 8, 1)
        red = cv.CreateImage(self.size, 8, 1)
        green = cv.CreateImage(self.size, 8, 1)

        hue = cv.CreateImage(self.size, 8, 1)
        sat = cv.CreateImage(self.size, 8, 1)
        val = cv.CreateImage(self.size, 8, 1)

        #Create an image to be returned and eventually displayed
        thresholds = cv.CreateImage(self.size, 8, 1)

        #Create images to save the thresholded images to
        red_threshed = cv.CreateImage(self.size, 8, 1)
        green_threshed = cv.CreateImage(self.size, 8, 1)
        blue_threshed = cv.CreateImage(self.size, 8, 1)

        hue_threshed = cv.CreateImage(self.size, 8, 1)
        sat_threshed = cv.CreateImage(self.size, 8, 1)
        val_threshed = cv.CreateImage(self.size, 8, 1)

        #Split the image up into channels, saving them in their respective image
        cv.Split(self.image, blue, green, red, None)
        cv.CvtColor(self.image, self.hsv, cv.CV_RGB2HSV)
        cv.Split(self.hsv, hue, sat, val, None)

        #Threshold the images based on the slider values
        cv.InRangeS(red, self.thresholds['low_red'],\
                    self.thresholds['high_red'], red_threshed)
        cv.InRangeS(green, self.thresholds['low_green'],\
                    self.thresholds['high_green'], green_threshed)
        cv.InRangeS(blue, self.thresholds['low_blue'],\
                    self.thresholds['high_blue'], blue_threshed)

        cv.InRangeS(hue, self.thresholds['low_hue'],\
                    self.thresholds['high_hue'], hue_threshed)
        cv.InRangeS(sat, self.thresholds['low_sat'],\
                    self.thresholds['high_sat'], sat_threshed)
        cv.InRangeS(val, self.thresholds['low_val'],\
                    self.thresholds['high_val'], val_threshed)

        #Recombine all of the thresholded images into one image
        cv.Mul(red_threshed, green_threshed, thresholds)
        cv.Mul(thresholds, blue_threshed, thresholds)
        cv.Mul(thresholds, hue_threshed, thresholds)
        cv.Mul(thresholds, sat_threshed, thresholds)
        cv.Mul(thresholds, val_threshed, thresholds)

        #Erode and Dilate shave off and add edge pixels respectively
        cv.Erode(thresholds, thresholds, iterations=1)
        cv.Dilate(thresholds, thresholds, iterations=1)

        return thresholds
示例#3
0
	def TransformImage(self, bgr, hsv, channels, size, method):
		assert(bgr.type == cv.CV_8UC3)
		assert(hsv.type == cv.CV_8UC3)

		chs_all = [ cv.CreateMat(hsv.rows, hsv.cols, cv.CV_8UC1) for i in range(0, 6) ]
		cv.Split(bgr, chs_all[CH_BLUE], chs_all[CH_GREEN], chs_all[CH_RED], None)
		cv.Split(hsv, chs_all[CH_HUE],  chs_all[CH_SAT],   chs_all[CH_VAL], None)
		chs = [ cv.GetImage(chs_all[ch]) for ch in channels ]

		dst = cv.CreateMat(hsv.rows - size[1] + 1, hsv.cols - size[0] + 1, cv.CV_32FC1)
		cv.CalcBackProjectPatch(chs, dst, size, self.hist_pos, method, 1.0)
		return dst
示例#4
0
def hs_histogram(src, patch):
    # Convert to HSV
    hsv = cv.CreateImage(cv.GetSize(src), 8, 3)
    cv.CvtColor(src, hsv, cv.CV_BGR2HSV)
    hsv_patch= cv.CreateImage(cv.GetSize(patch), 8, 3)

    # Extract the H and S planes
    h_plane = cv.CreateMat(src.rows, src.cols, cv.CV_8UC1)
    h_plane_img = cv.CreateImage(cv.GetSize(src), 8, 1)
    h_plane_patch = cv.CreateMat(patch.rows, patch.cols, cv.CV_8UC1)
    s_plane = cv.CreateMat(src.rows, src.cols, cv.CV_8UC1)
    s_plane_img = cv.CreateImage(cv.GetSize(src), 8, 1)
    s_plane_patch = cv.CreateMat(patch.rows, patch.cols, cv.CV_8UC1)
    v_plane = cv.CreateMat(src.rows, src.cols, cv.CV_8UC1)

    cv.Split(hsv, h_plane, s_plane, v_plane, None)
    cv.Split(hsv, h_plane_img, s_plane_img, None, None)
    cv.Split(hsv_patch, h_plane_patch, s_plane_patch, None, None)
    #cv.Split(src, h_plane, s_plane, v_plane, None)
    planes = [h_plane_patch, s_plane_patch]#, s_plane, v_plane]

    h_bins = 30
    s_bins = 32
    v_bins = 30
    hist_size = [h_bins, s_bins]
    # hue varies from 0 (~0 deg red) to 180 (~360 deg red again */
    h_ranges = [0, 180]
    # saturation varies from 0 (black-gray-white) to
    # 255 (pure spectrum color)
    s_ranges = [0, 255]
    v_ranges = [0, 255]
    ranges = [h_ranges, s_ranges]#, s_ranges, v_ranges]
    scale = 10
    hist = cv.CreateHist([h_bins, s_bins], cv.CV_HIST_ARRAY, ranges, 1)
    cv.CalcHist([cv.GetImage(i) for i in planes], hist)
    (_, max_value, _, _) = cv.GetMinMaxHistValue(hist)

    hist_img = cv.CreateImage((h_bins*scale, s_bins*scale), 8, 3)

    back_proj_img = cv.CreateImage(cv.GetSize(src), 8, 1)
    cv.CalcBackProject([h_plane_img, s_plane_img], back_proj_img, hist)
    
    # for h in range(h_bins):
    #     for s in range(s_bins):
    #         bin_val = cv.QueryHistValue_2D(hist, h, s)
    #         intensity = cv.Round(bin_val * 255 / max_value)
    #         cv.Rectangle(hist_img,
    #                      (h*scale, s*scale),
    #                      ((h+1)*scale - 1, (s+1)*scale - 1),
    #                      cv.RGB(intensity, intensity, intensity), 
    #                      cv.CV_FILLED)
    return back_proj_img, hist
示例#5
0
def image_callback(data):
    global running
    if (running):
        image = bridge.imgmsg_to_cv(data, "bgr8")

        #normalize image
        cv.Split(image, rgb_r, rgb_g, rgb_b, None)
        red_mean = cv2.mean(np.asarray(rgb_r[:, :]))
        cv.Div(src2=cv.fromarray(np.ones((480, 640))),
               src1=rgb_r,
               dst=scaled_r,
               scale=128 / red_mean[0])
        green_mean = cv2.mean(np.asarray(rgb_g[:, :]))
        cv.Div(src2=cv.fromarray(np.ones((480, 640))),
               src1=rgb_g,
               dst=scaled_g,
               scale=128 / green_mean[0])
        blue_mean = cv2.mean(np.asarray(rgb_b[:, :]))
        cv.Div(src2=cv.fromarray(np.ones((480, 640))),
               src1=rgb_b,
               dst=scaled_b,
               scale=128 / blue_mean[0])
        cv.Merge(scaled_r, scaled_g, scaled_b, None, cv_image)

        cv.CvtColor(cv_image, hsv, cv.CV_BGR2HSV)  # --convert from BGR to HSV
        cv.CvtColor(cv_image, lab, cv.CV_BGR2Lab)

        cv.Split(hsv, hsv_h, hsv_s, hsv_v, None)
        cv.Split(cv_image, rgb_r, rgb_g, rgb_b, None)
        cv.Split(lab, lab_l, lab_a, lab_b, None)
        cv.Split(luv, luv_l, luv_u, luv_v, None)
        cv.Split(hls, hls_h, hls_l, hls_s, None)
        cv.Split(xyz, xyz_x, xyz_y, xyz_x, None)
        cv.Split(ycrcb, ycrcb_y, ycrcb_cr, ycrcb_cb, None)

        cv.Not(lab_a, a_not)
        cv.Sub(hsv_s, a_not, sa)
        cv.Sub(luv_u, hls_h, test)
        cv.Sub(hls_s, hls_h, sminh)

        threshold_red(sa)

        cv.ShowImage("red", red_dilated_image)

        red_contours, _ = cv2.findContours(image=np.asarray(
            red_dilated_image[:, :]),
                                           mode=cv.CV_RETR_EXTERNAL,
                                           method=cv.CV_CHAIN_APPROX_SIMPLE)

        print_lidar_projections(cv_image)

        circles = extract_circles(red_contours, [1, 0, 0])
        for x, y, radius in circles:
            cv.Circle(cv_image, (x, y), radius, [0, 0, 1], 3)

        cv.SetMouseCallback("camera feed", mouse_callback, hsv_image)
        cv.ShowImage("camera feed", cv_image)

        cv.WaitKey(3)
def wximg_to_cv(wximg, flatten=False):
    """ Converts a WxImage to a OpenCV IplImage, with optional conversion
    to Grayscale (single channel).
    """
    w, h = wximg.GetWidth(), wximg.GetHeight()
    #wximg = wximg.Copy()
    if flatten:
        wximg = wximg.ConvertToGreyscale()
    #data = wximg.GetData()

    #cv_im = cv.CreateImage((w, h), cv.IPL_DEPTH_8U, 3)
    #cv.SetData(cv_im, data)

    #cv_mat = cv.CreateMat(h,w, cv.CV_8UC3)
    #cv.SetData(cv_mat, data)

    #cv_mathead= cv.CreateMatHeader(h, w, cv.CV_8UC3)
    #cv.CreateData(cv_mathead)
    #cv.SetData(cv_mat, data)

    cv_mat = cv.CreateMat(h, w, cv.CV_8UC3)
    cv.SetData(cv_mat, wximg.GetData())

    #cv.Copy(data, cv_mat)
    if flatten:
        #cv.SetImageCOI(cv_im, 1)
        #res = cv.CreateImage((w,h), cv.IPL_DEPTH_8U, 1)
        #cv.Copy(cv_im, res)
        #return res
        res = cv.CreateMat(h, w, cv.CV_8UC1)
        cv.Split(cv_mat, res, None, None, None)
        return res
    else:
        return cv_mat
示例#7
0
def get_three_planes(src):
    channels = [None] * 4
    size = cv.GetSize(src)
    for i in range(src.channels):
        channels[i] = cv.CreateImage(size, src.depth, 1)
    cv.Split(src, channels[0], channels[1], channels[2], None)
    return channels[:3]
示例#8
0
def hsv_orange_red_threshold(input_image):
    blur_image = cv.CreateMat(input_image.rows, input_image.cols, cv.CV_8UC3)
    cv.Smooth(input_image, blur_image, cv.CV_BLUR, 10, 10)
    proc_image = cv.CreateMat(input_image.rows, input_image.cols, cv.CV_8UC3)
    cv.CvtColor(blur_image, proc_image, cv.CV_BGR2HSV)
    split_image = [
        cv.CreateMat(input_image.rows, input_image.cols, cv.CV_8UC1),
        cv.CreateMat(input_image.rows, input_image.cols, cv.CV_8UC1),
        cv.CreateMat(input_image.rows, input_image.cols, cv.CV_8UC1)
    ]
    cv.Split(proc_image, split_image[0], split_image[1], split_image[2], None)

    thresh_0 = cv.CreateMat(input_image.rows, input_image.cols, cv.CV_8UC1)
    thresh_1 = cv.CreateMat(input_image.rows, input_image.cols, cv.CV_8UC1)
    thresh_2 = cv.CreateMat(input_image.rows, input_image.cols, cv.CV_8UC1)
    red_orange = cv.CreateMat(input_image.rows, input_image.cols, cv.CV_8UC1)
    cv.Threshold(split_image[1], thresh_0, 128, 255,
                 cv.CV_THRESH_BINARY)  # > 50% saturation
    cv.Threshold(split_image[0], thresh_1, 220, 255,
                 cv.CV_THRESH_BINARY)  # > Purple
    cv.Threshold(split_image[0], thresh_2, 10, 255,
                 cv.CV_THRESH_BINARY_INV)  # < Yellow-Orange
    cv.Add(thresh_1, thresh_2, red_orange)
    cv.And(red_orange, thresh_0, red_orange)

    return red_orange
示例#9
0
def hs_histogram(src):
    # Convert to HSV
    hsv = cv.CreateImage(cv.GetSize(src), 8, 3)
    cv.CvtColor(src, hsv, cv.CV_BGR2HSV)

    # Extract the H and S plane
    h_plane = cv.CreateMat(src.rows, src.cols, cv.CV_8UC1)
    s_plane = cv.CreateMat(src.rows, src.cols, cv.CV_8UC1)
    cv.Split(hsv, h_plane, s_plane, None, None)
    planes = [h_plane, s_plane]

    h_bins = 30
    s_bins = 32
    hist_size = [h_bins, s_bins]
    # hue varies from 0 to 180
    h_ranges = [0, 180]
    # saturation varies from 0 to 255
    s_ranges = [0, 255]
    ranges = [h_ranges, s_ranges]
    scale = 10
    hist = cv.CreateHist([h_bins, s_bins], cv.CV_HIST_ARRAY, ranges, 1)
    cv.CalcHist([cv.GetImage(i) for i in planes], hist)
    (_, max_value, _, _) = cv.GetMinMaxHistValue(hist)

    hist_img = cv.CreateImage((h_bins * scale, s_bins * scale), 8, 3)

    for h in range(h_bins):
        for s in range(s_bins):
            bin_val = cv.QueryHistValue_2D(hist, h, s)
            intensity = cv.Round(bin_val * 255 / max_value)
            cv.Rectangle(hist_img, (h * scale, s * scale),
                         ((h + 1) * scale - 1, (s + 1) * scale - 1),
                         cv.RGB(intensity, intensity, intensity), cv.CV_FILLED)

    return hist_img
示例#10
0
    def compute_histogram(self, img, bin_fact=cv.IPL_DEPTH_8U, min_range=0):
        """
        Creates the histogram of the input image
        
        Returns a Tippy histogram, with one item by channel of input image.
        The number of bins is 2^bin_fact (256 by default)
        min_range is the value of the lowest bin
        max_range is automatically calculated using the input image depth. 
        max_range = (2^img_depth)
        
        NOTE : Supports only 8 bits images for now. 
        More should be added soon.
        """
        # TESTS
        try:
            dims = cv.GetSize(img)
        except TypeError:
            raise TypeError("(%s) img : IplImage expected!" %
                            (sys._getframe().f_code.co_name))

        # img test
        #if not(img.depth == cv.IPL_DEPTH_8U):
        #    raise TypeError("(%s) 8U image expected!"
        #                    % (sys._getframe().f_code.co_name))
        if img.nChannels not in [1, 3]:
            raise ValueError("(%s) 1 or 3 channels image expected!" %
                             (sys._getframe().f_code.co_name))
        # bin_fact test
        if (bin_fact <= 0 or ((bin_fact % 2) != 0)):
            raise ValueError("(%s) Positive odd integer expected!" %
                             (sys._getframe().f_code.co_name))
        elif type(bin_fact) not in [int, long]:
            raise TypeError("(%s) Positive odd integer expected!" %
                            (sys._getframe().f_code.co_name))

        # min_range test
        if type(min_range) != int:
            raise TypeError("(%s) Positive odd integer expected!" %
                            (sys._getframe().f_code.co_name))

        self.channels = img.nChannels
        self.nb_bins = int(pow(2, bin_fact))
        self.depth = int(img.depth)
        max_range = pow(2, bin_fact) + min_range - 1
        self.ranges = [min_range, max_range]

        img_list = []
        # preparing images depending on nChannels
        if self.channels == 1:
            img_list = [img]
        elif self.channels == 3:
            # TODO: change this into function
            img_1 = cv.CreateImage(dims, cv.IPL_DEPTH_8U, 1)
            img_2 = cv.CreateImage(dims, cv.IPL_DEPTH_8U, 1)
            img_3 = cv.CreateImage(dims, cv.IPL_DEPTH_8U, 1)

            cv.Split(img, img_1, img_2, img_3, None)
            img_list = [img_1, img_2, img_3]

        self.cvhist = self._compute_1ch_histogram(img_list)
示例#11
0
 def update_hue(self, frame):
     """ Convert frame to HSV and keep the hue
     """
     hsv = cv.CreateImage(cv.GetSize(frame), 8, 3)
     cv.CvtColor(frame, hsv, cv.CV_BGR2HSV)
     self.hue = cv.CreateImage(cv.GetSize(frame), 8, 1)
     cv.Split(hsv, self.hue, None, None, None)
示例#12
0
def main(args):
    if args.output_directory:
        directory = args.output_directory
    else:
        directory = os.path.dirname(args.input_image)
        print "No output directory specified. Defaulting to %s" % directory
    if not os.path.exists(directory):
        os.makedirs(directory)
    if args.output_prefix:
        prefix = args.output_prefix
        extension = os.path.splitext(os.path.basename(args.input_image))[1]
    else:
        prefix, extension = os.path.splitext(os.path.basename(
            args.input_image))
        print "No output prefix selected. Defaulting to %s" % prefix
    output_file = "%s/%s%s" % (directory, prefix, extension)

    image = cv.LoadImage(args.input_image)
    input_image = cv.LoadImage(args.input_image)
    mask = cv.CreateImage(cv.GetSize(input_image), 8, 1)
    image_hue = cv.CreateImage(cv.GetSize(input_image), 8, 1)

    image_hsv = cv.CreateImage(cv.GetSize(input_image), 8, 3)

    cv.CvtColor(input_image, image_hsv, cv.CV_BGR2HSV)
    cv.Split(image_hsv, image_hue, None, None, None)
    upper_thresh = cv.CreateImage(cv.GetSize(input_image), 8, 1)
    lower_thresh = cv.CreateImage(cv.GetSize(input_image), 8, 1)

    cv.Threshold(image_hue, upper_thresh, args.hue_max, 255,
                 cv.CV_THRESH_BINARY)
    cv.Threshold(image_hue, lower_thresh, args.hue_min, 255,
                 cv.CV_THRESH_BINARY_INV)
    cv.Or(upper_thresh, lower_thresh, mask)
    cv.SaveImage(output_file, mask)
示例#13
0
    def threshold(self, frame, record, op=cv.And, magic=False):
        """Threshold a frame using a record of min/max thresholds

        Output is a new image.
        """
        colorspace, min, max = record

        tmp = cv.CloneImage(frame)
        if magic:
            cv.Smooth(tmp, tmp, cv.CV_GAUSSIAN, 11)
        # Work in the correct colorspace
        self.colorspaceConv[colorspace](tmp)

        num_chans = len(min)
        size = cv.GetSize(frame)
        chan = [
            cv.CreateImage(size, cv.IPL_DEPTH_8U, 1) for _ in range(num_chans)
        ]
        cv.Split(tmp, chan[0], chan[1], chan[2], None)

        minS = map(cv.Scalar, min)
        maxS = map(cv.Scalar, max)
        for i in range(num_chans):
            cv.InRangeS(chan[i], minS[i], maxS[i], chan[i])

        out = cv.CreateImage(size, cv.IPL_DEPTH_8U, 1)
        op(chan[0], chan[1], out)
        op(out, chan[2], out)

        return out
示例#14
0
def split3(cvimg):
    size = (cvimg.width, cvimg.height)
    c1 = cv.CreateImage(size, cv.IPL_DEPTH_8U, 1)
    c2 = cv.CreateImage(size, cv.IPL_DEPTH_8U, 1)
    c3 = cv.CreateImage(size, cv.IPL_DEPTH_8U, 1)
    cv.Split(cvimg, c1, c2, c3, None)
    return c1, c2, c3
示例#15
0
 def hist_eq(self, frame):
     cv.Split(frame, self.B, self.G, self.R, None)
     cv.EqualizeHist(self.R, self.R)
     cv.EqualizeHist(self.R, self.B)
     cv.EqualizeHist(self.G, self.G)
     cv.Merge(self.B, self.G, self.R, None, self.Ieq)
     return self.Ieq
示例#16
0
def get_image():
    global corners
    corners = []
    im = cv.QueryFrame(camera)
    im_rgb = cv.GetMat(im)
    cv.CvtColor(im, im_rgb, cv.CV_BGR2RGB)  #getting the rgbimage

    #worst image grayscaling of all time.
    #image = cv.CreateImage(cv.GetSize(im),cv.IPL_DEPTH_32F,3)
    #cv.ConvertScale(im,image)
    #new_image = cv.CreateImage(cv.GetSize(im),cv.IPL_DEPTH_32F,1)
    #cv.CvtColor(image,new_image,cv.CV_BGR2GRAY)
    #gray_image = cv.CreateImage(cv.GetSize(im),cv.IPL_DEPTH_8U,1)
    #cv.ConvertScale(new_image,gray_image)
    yuv = cv.CreateImage(cv.GetSize(im), 8, 3)
    gray_image = cv.CreateImage(cv.GetSize(im), 8, 1)
    cv.CvtColor(im, yuv, cv.CV_BGR2YCrCb)
    cv.Split(yuv, gray_image, None, None, None)

    eig_image = cv.CreateImage(cv.GetSize(gray_image), cv.IPL_DEPTH_32F, 1)
    temp_image = cv.CreateImage(cv.GetSize(gray_image), cv.IPL_DEPTH_32F, 1)

    for (x, y) in cv.GoodFeaturesToTrack(gray_image,
                                         eig_image,
                                         temp_image,
                                         300,
                                         0.01,
                                         1.0,
                                         useHarris=True):
        corners.append([WIDTH - x, y])

    return pygame.transform.flip(
        pygame.image.frombuffer(im_rgb.tostring(), cv.GetSize(im_rgb), "RGB"),
        True, False)
    def processFrames(self):
        self.vidcap = cv2.VideoCapture(self.path)

        count = 0

        success, image = self.vidcap.read()
        print success

        self.createWindows()

        while True:
            success, image = self.vidcap.read()

            if not success:
                return

            spare = cv.fromarray(image)

            size = (spare.width / 2, spare.height / 2)

            cv.Smooth(spare, spare, cv.CV_GAUSSIAN, BLUR_SIZE, BLUR_SIZE)

            out = cv.CreateImage(size, 8, 3)
            cv.PyrDown(spare, out)

            yuv = cv.CreateImage(size, 8, 3)
            gray = cv.CreateImage(size, 8, 1)
            canny = cv.CreateImage(size, 8, 1)
            sobel = cv.CreateImage(size, 8, 1)
            harris = cv.CreateImage(size, cv.IPL_DEPTH_32F, 1)

            cv.CvtColor(out, yuv, cv.CV_BGR2YCrCb)
            cv.Split(yuv, gray, None, None, None)

            cv.Canny(gray, canny, 50, 200, 3)
            cv.CornerHarris(gray, harris, 3)
            cv.Sobel(gray, sobel, 1, 0, 3)

            cv.ConvertScale(canny, canny, -1, 255)
            cv.ConvertScale(sobel, sobel, -1, 255)

            for y in range(0, out.height):
                for x in range(0, out.width):
                    harr = cv.Get2D(sobel, y, x)
                    if harr[0] < 10e-06:
                        cv.Circle(out, (x, y), 2, cv.RGB(155, 0, 25))

            #cv2.imwrite("frame%d.jpg" % count, np.asarray(canny[:,:]))

            cv.ShowImage('canny', canny)
            #cv.ShowImage(   'harris'   , harris  )
            cv.ShowImage('sobel', sobel)
            cv.ShowImage('output', out)

            if cv2.waitKey(1) == 27:
                break
            count += 1

        return
示例#18
0
    def calcHistogram(self, image):
        cv.CvtColor(image, self.tmp, cv.CV_BGR2HSV)
        cv.Split(self.tmp, self.B, self.G, self.R, None)
        channels = self.B, self.G, self.R

        hist_props = [{} for channel in channels]

        #Normalisation constant for histogram size
        size_norm = 255.0 / self.hist_size

        for chnum, ch in enumerate(channels):
            #, colour, Ypos in zip(channels, values, positions):
            cv.CalcHist([ch], self.hist, 0, None)

            hist_arr = self.smoothHistogram()
            diffs = np.diff(hist_arr, 1)

            hist_props[chnum]['plateaus'] = []
            mins = [(0, 0)]
            for i, v in enumerate(diffs):
                if v < mins[-1][1]:
                    mins.append((i, v))
                if hist_arr[i] > 1 and diffs[i - 1] * diffs[i] <= 0:
                    hist_props[chnum]['plateaus'].append(i * size_norm)

            hist_props[chnum]['mins'] = [(i * size_norm, v) for i, v in mins]
            #print "MINS:",mins

            # Calculate beyond the 100th percentile due to numerical instability
            ptile = range(0, 103, 1)
            total = sum(hist_arr)
            running_sum = 0
            for i, v in enumerate(hist_arr):
                running_sum += v
                while running_sum >= total * ptile[0] / 100.0:
                    hist_props[chnum][ptile[0]] = i * size_norm
                    del ptile[0]

            # Make sure all percentiles are actually in the data structure:
            prev = 10
            for p in ptile:
                if p in hist_props[chnum]:
                    prev = p
                else:
                    hist_props[chnum][p] = hist_props[chnum][prev]
            assert 90 in hist_props[chnum], "percentile calculation incomplete"

            post_peaks = mins[-1][0]
            for i in range(mins[-1][0], len(diffs)):
                if diffs[i - 1] * diffs[i] <= 0:
                    post_peaks = i
                    #print hist_arr[i:]
                    break
            #print "POST:",post_peaks*size_norm
            hist_props[chnum]['post_peaks'] = post_peaks * size_norm

            #self.drawHistogram(tmp, chnum, hist_arr, plateaus)

        return hist_props
示例#19
0
    	def hough_extractor(self, side):
		
        	# create space for a single channel blue image (the robot is red, so I don't want to use that)
        	blue_image = cv.CreateImage((self.width/2, self.height), 8, 1)# half-width, for splitting down the middle
        	#cv.CvtColor(self.cv_image, blue_image, cv.CV_BGR2GRAY)
		
		if side = "left":# the image is divided down the middle, so only look at appropriate side
			cv.Split(self.left_image, blue_image)
示例#20
0
def channels_split(image):
    # -- split channels into individual channels
    channel = []
    # -- all rows and cols  will have 8 bit unisg value
    for x in range(0, 3):
        channel.append(cv.CreateMat(image.rows, image.cols, cv.CV_8UC1))
    cv.Split(image, channel[0], channel[1], channel[2], None)
    return channel
示例#21
0
def split3(iplimage):
    if iplimage.nChannels != 3:
        raise ValueError("The channel is not consistent.")
    b = cv.CreateImage((iplimage.width, iplimage.height), cv.IPL_DEPTH_8U, 1)
    g = cv.CreateImage((iplimage.width, iplimage.height), cv.IPL_DEPTH_8U, 1)
    r = cv.CreateImage((iplimage.width, iplimage.height), cv.IPL_DEPTH_8U, 1)
    cv.Split(iplimage, b, g, r, None)
    return b, g, r
示例#22
0
def getBrightness(img):
  hue = cv.CreateImage(cv.GetSize(img), cv.IPL_DEPTH_8U,1)
  sat = cv.CreateImage(cv.GetSize(img), cv.IPL_DEPTH_8U,1)
  val = cv.CreateImage(cv.GetSize(img), cv.IPL_DEPTH_8U,1)
  test = cv.CloneImage(img)
  cv.CvtColor(img,test, cv.CV_BGR2HSV)
  cv.Split(img, hue, sat,val,None)
  	
  return cv.Avg(val)[0]
def split(im):
    if im.nChannels == 3:
        imr = new_from(im, nChannels=1)
        img = new_from(im, nChannels=1)
        imb = new_from(im, nChannels=1)
        cv.Split(im, imr, img, imb, None)
        return (imr, img, imb)
    else:
        return (im,)
示例#24
0
def cutLetters(image, thresh, log):
    mask = createMask(image, thresh)
    log.log(mask)
    h = cv.CreateImage(cv.GetSize(image), image.depth, 1)
    cv.CvtColor(image, image, cv.CV_BGR2HSV)
    cv.Split(image, h, None, None, None)
    log.log(h)
    cv.Set(h, cv.ScalarAll(255), mask)
    return h
示例#25
0
    def get_raw_frame(self):
        # Assumes that we are going to debayer the image later, so
        # returns a single channel image.
        im = cv.QueryFrame(self.capture)

        if im == None:
            raise NoFrameException('')
        cv.Split(im, self.gray_image, None, None, None)
        return self.gray_image
示例#26
0
    def run(self):
        hist = cv.CreateHist([180], cv.CV_HIST_ARRAY, [(0, 180)], 1)
        backproject_mode = False
        while True:
            frame = cv.QueryFrame(self.capture)

            # Convert to HSV and keep the hue
            hsv = cv.CreateImage(cv.GetSize(frame), 8, 3)
            cv.CvtColor(frame, hsv, cv.CV_BGR2HSV)
            self.hue = cv.CreateImage(cv.GetSize(frame), 8, 1)
            print(self.hue)
            cv.Split(hsv, self.hue, None, None, None)

            # Compute back projection
            backproject = cv.CreateImage(cv.GetSize(frame), 8, 1)

            # Run the cam-shift
            cv.CalcArrBackProject([self.hue], backproject, hist)
            if self.track_window and is_rect_nonzero(self.track_window):
                crit = (cv.CV_TERMCRIT_EPS | cv.CV_TERMCRIT_ITER, 10, 1)
                (iters, (area, value, rect),
                 track_box) = cv.CamShift(backproject, self.track_window, crit)
                self.track_window = rect

            # If mouse is pressed, highlight the current selected rectangle
            # and recompute the histogram

            if self.drag_start and is_rect_nonzero(self.selection):
                sub = cv.GetSubRect(frame, self.selection)
                save = cv.CloneMat(sub)
                cv.ConvertScale(frame, frame, 0.5)
                cv.Copy(save, sub)
                x, y, w, h = self.selection
                cv.Rectangle(frame, (x, y), (x + w, y + h), (255, 255, 255))

                sel = cv.GetSubRect(self.hue, self.selection)
                cv.CalcArrHist([sel], hist, 0)
                (_, max_val, _, _) = cv.GetMinMaxHistValue(hist)
                if max_val != 0:
                    cv.ConvertScale(hist.bins, hist.bins, 255. / max_val)
            elif self.track_window and is_rect_nonzero(self.track_window):
                cv.EllipseBox(frame, track_box, cv.CV_RGB(255, 0, 0), 3,
                              cv.CV_AA, 0)

            if not backproject_mode:
                #frame=cv.Flip(frame)
                cv.ShowImage("CamShiftDemo", frame)
            else:
                cv.ShowImage("CamShiftDemo", backproject)
            cv.ShowImage("Histogram", self.hue_histogram_as_image(hist))

            c = cv.WaitKey(7)
            if c == 27:
                break
            elif c == ord("b"):
                backproject_mode = not backproject_mode
示例#27
0
def detect_and_draw(img, cascade):
    # allocate temporary images
    gray = cv.CreateImage((img.width, img.height), 8, 1)
    small_img = cv.CreateImage((cv.Round(
        img.width / image_scale), cv.Round(img.height / image_scale)), 8, 1)

    # convert color input image to grayscale
    cv.CvtColor(img, gray, cv.CV_BGR2GRAY)

    # scale input image for faster processing
    cv.Resize(gray, small_img, cv.CV_INTER_LINEAR)

    cv.EqualizeHist(small_img, small_img)

    window = cv.CreateImage((cv.Round(img.width), cv.Round(img.height)), 8, 3)
    if (cascade):
        t = cv.GetTickCount()
        faces = local_haar_detect(small_img, cascade, cv.CreateMemStorage(0),
                                  haar_scale, min_neighbors, haar_flags,
                                  min_size)
        t = cv.GetTickCount() - t
        print "detection time = %gms" % (t / (cv.GetTickFrequency() * 1000.))
        channels = None
        if faces:
            for ((x, y, w, h), n) in faces:
                # the input to cv.HaarDetectObjects was resized, so scale the
                # bounding box of each face and convert it to two CvPoints
                pt1 = (cv.Round(
                    (x + w * .2) * image_scale), cv.Round(y * image_scale))
                pt2 = (cv.Round(
                    (x + w * .8) * image_scale), cv.Round(
                        (y + h) * image_scale))

                window = cv.CreateImage((cv.Round(w * .6) * image_scale,
                                         cv.Round(h) * image_scale), 8, 3)
                cv.Smooth(window, window, cv.CV_GAUSSIAN)
                channels = [
                    cv.CreateImage((cv.Round(w * .6) * image_scale,
                                    cv.Round(h) * image_scale), 8, 1),
                    cv.CreateImage((cv.Round(w * .6) * image_scale,
                                    cv.Round(h) * image_scale), 8, 1),
                    cv.CreateImage((cv.Round(w * .6) * image_scale,
                                    cv.Round(h) * image_scale), 8, 1)
                ]
                cv.GetRectSubPix(img, window, (cv.Round(
                    (pt1[0] + pt2[0]) / 2.0), cv.Round(
                        (pt1[1] + pt2[1]) / 2.0)))
                cv.Rectangle(img, pt1, pt2, cv.RGB(255, 0, 0), 3, 8, 0)
                cv.Split(window, channels[0], channels[1], channels[2], None)
                result.append([
                    cv.Avg(channels[0])[0],
                    cv.Avg(channels[1])[0],
                    cv.Avg(channels[2])[0]
                ])

    cv.ShowImage("result", img)
示例#28
0
 def calc_hist(self):
     self.hist = cv.CreateHist([self.h_bins, self.s_bins], cv.CV_HIST_ARRAY, self.ranges, 1)
     hsv = cv.CreateImage(cv.GetSize(self.background_noise[0]), 8, 3)
     h_plane = cv.CreateMat(self.background_noise[0].height, self.background_noise[0].width, cv.CV_8UC1)
     s_plane = cv.CreateMat(self.background_noise[0].height, self.background_noise[0].width, cv.CV_8UC1)
     for i in xrange(len(self.background_noise)):
         cv.CvtColor(self.background_noise[i], hsv, cv.CV_BGR2HSV)
         cv.Split(hsv, h_plane, s_plane, None, None)            
         planes = [h_plane, s_plane]#, s_plane, v_plane]
         cv.CalcHist([cv.GetImage(i) for i in planes], self.hist, True, self.mask)            
示例#29
0
    def process_rgb(self, dev, data, timestamp):
        #global keep_running
        # get an opencv version of video_cv data
        frame = frame_convert.video_cv(data)
        frame_size = cv.GetSize(frame)

        # Convert to HSV and keep the hue
        hsv = cv.CreateImage(frame_size, 8, 3)
        cv.CvtColor(frame, hsv, cv.CV_BGR2HSV)
        self.hue = cv.CreateImage(frame_size, 8, 1)

        # split the image into different hues
        cv.Split(hsv, self.hue, None, None, None)

        # Compute back projection
        # Run the cam-shift
        backproject = cv.CreateImage(frame_size, 8, 1)
        cv.CalcArrBackProject([self.hue], backproject, self.hist)

        # if we have a tracking window... shift it
        # Track_window => (rectangle of approx hue)
        if self.track_window and is_rect_nonzero(self.track_window):
            # set criteria for backproject iter
            # compute back projections - shifting rectangle in
            # appropriate direction
            crit = (cv.CV_TERMCRIT_EPS | cv.CV_TERMCRIT_ITER, 10, 1)
            (iters, (area, value, rect),
             self.track_box) = cv.CamShift(backproject, self.track_window,
                                           crit)
            # set track_window to the newly selected rectangle
            self.track_window = rect

        # if a section is being selected - set the histogram
        if self.debug:
            sel = self.dbg_rgb.check_for_selection(self.track_window,
                                                   self.track_box)

            # sets the histogram if there is a selection
            if sel: self.set_hist(frame, sel)

            self.dbg_rgb.update(frame)
            #if self.track_window:
            #  self.dbg_rgb.add_box(self.track_box)

            self.dbg_rgb.render()

        # Bail out if ESC is pushed
        key = cv.WaitKey(3)
        char = chr(key & 255)

        # k is for KILL
        if char == 'k':
            self.keep_running = False
        else:
            self.curr_classifier().respond_to_key(char)
示例#30
0
def sat_threshold(image, min_sat):
    image_hsv = cv.CloneImage(image)
    cv.CvtColor(image, image_hsv, cv.CV_RGB2HSV)
    image_sat = cv.CreateImage(cv.GetSize(image_hsv), 8, 1)
    cv.Split(image_hsv, None, image_sat, None, None)
    sat_thresh = cv.CloneImage(image_sat)
    cv.Threshold(image_sat, sat_thresh, min_sat, 255, cv.CV_THRESH_BINARY)
    image_out = cv.CloneImage(image)
    cv.Zero(image_out)
    cv.Copy(image, image_out, sat_thresh)
    return image_out