示例#1
0
def calc_flow_old(img0, img1, p0):
    p0 = [(x, y) for x, y in p0.reshape(-1, 2)]
    h, w = img0.shape[:2]
    img0_cv = cv.CreateMat(h, w, cv.CV_8U)
    img1_cv = cv.CreateMat(h, w, cv.CV_8U)
    np.asarray(img0_cv)[:] = img0
    np.asarray(img1_cv)[:] = img1
    t = clock()
    features, status, error = cv.CalcOpticalFlowPyrLK(
        img0_cv, img1_cv, None, None, p0, lk_params['winSize'],
        lk_params['maxLevel'],
        (cv.CV_TERMCRIT_EPS | cv.CV_TERMCRIT_ITER, 10, 0.03), 0, p0)
    return np.float32(features), status, error, clock() - t
示例#2
0
def compute(playerList, video):
    videoName = video
    capture = cv.CaptureFromFile(videoName)

    count = int(cv.GetCaptureProperty(capture, cv.CV_CAP_PROP_FRAME_COUNT))
    fps = cv.GetCaptureProperty(capture, cv.CV_CAP_PROP_FPS)
    width = int(cv.GetCaptureProperty(capture, cv.CV_CAP_PROP_FRAME_WIDTH))
    height = int(cv.GetCaptureProperty(capture, cv.CV_CAP_PROP_FRAME_HEIGHT))

    # store the last frame
    preFrame = cv.CreateImage((width, height), 8, 1)
    # store the current frame
    curFrame = cv.CreateImage((width, height), 8, 1)

    prePyr = cv.CreateImage((height / 3, width + 8), 8, cv.CV_8UC1)
    curPyr = cv.CreateImage((height / 3, width + 8), 8, cv.CV_8UC1)

    numOfPlayers = len(playerList)

    # store players moving distance
    players = np.zeros(numOfPlayers)

    # store players position of last frame
    prePlayers = playerList
    # store players position of current frame
    curPlayers = []

    img = cv.CreateImage((width, height), 8, 1)

    #flag of storing player info
    flagInfo = True

    for f in xrange(count):
        frame = cv.QueryFrame(capture)

        if (flagInfo):
            cv.CvtColor(frame, img, cv.CV_BGR2GRAY)
            for i in range(numOfPlayers):
                font = cv.InitFont(cv.CV_FONT_HERSHEY_SCRIPT_SIMPLEX, 0.4, 0.4,
                                   0, 2, 3)

                cv.PutText(
                    img, str(i),
                    (int(prePlayers[i][0][0]), int(prePlayers[i][0][1])), font,
                    (255, 255, 255))
            cv.SaveImage(playerInfo, img)
            flagInfo = False

        #Convert to gray
        cv.CvtColor(frame, curFrame, cv.CV_BGR2GRAY)

        #Calculate the movement using the previous and the current frame using the previous points
        curPlayers, status, err = cv.CalcOpticalFlowPyrLK(
            preFrame, curFrame, prePyr, curPyr, prePlayers, (10, 10), 3,
            (cv.CV_TERMCRIT_ITER | cv.CV_TERMCRIT_EPS, 20, 0.03), 0)

        ###temp = frame
        # add new distance to list
        for i in range(numOfPlayers):
            players[i] += getDistance(prePlayers[i], curPlayers[i])
            ###cv.Line(temp, (int(prePlayers[i][0]), int(prePlayers[i][1])), (int(curPlayers[i][0]), int(curPlayers[i][1])), (255,122,122),3)

        ###cv.ShowImage("test", temp)
        ###cv2.waitKey(20)

        #Put the current frame preFrame
        cv.Copy(curFrame, preFrame)
        prePlayers = curPlayers
    ###cv2.destroyAllWindows()
    # print distance
    i = 0
    f = open(recordFile, 'w')
    for player in players:
        i += 1
        print "player", i, "running distance: ", player, "\n"
        f.write("player" + str(i) + " running distance: " + str(player) +
                "meters\n")
示例#3
0
    # the default parameters
    quality = 0.01
    min_distance = 10

    # search the good points
    features = cv.GoodFeaturesToTrack(grey, eig, temp, MAX_COUNT, quality,
                                      min_distance, None, 3, 0, 0.04)

    # refine the corner locations
    features = cv.FindCornerSubPix(
        grey, features, (win_size, win_size), (-1, -1),
        (cv.CV_TERMCRIT_ITER | cv.CV_TERMCRIT_EPS, 20, 0.03))

    # calculate the optical flow
    features, status, track_error = cv.CalcOpticalFlowPyrLK(
        prev_grey, grey, prev_pyramid, pyramid, features, (win_size, win_size),
        3, (cv.CV_TERMCRIT_ITER | cv.CV_TERMCRIT_EPS, 20, 0.03), 0)

    # set back the points we keep
    features = [p for (st, p) in zip(status, features) if not st]

    # draw the points as green circles
    for the_point in features:
        cv.Circle(image, (int(the_point[0]), int(the_point[1])), 3,
                  (0, 255, 0, 0), -1, 8, 0)

    # swapping
    prev_grey, grey = grey, prev_grey
    prev_pyramid, pyramid = pyramid, prev_pyramid

    # we can now display the image
    cv.Copy(frame, output)

    if (len(prev_points) <= 10):  #Try to get more points
        #Detect points on the image
        features = cv.GoodFeaturesToTrack(gray, None, None, max_count, qLevel,
                                          minDist)
        prev_points.extend(features)  #Add the new points to list
        initial.extend(features)  #Idem

    if begin:
        cv.Copy(gray, prev_gray)  #Now we have two frames to compare
        begin = False

    #Compute movement
    curr_points, status, err = cv.CalcOpticalFlowPyrLK(
        prev_gray, gray, prevPyr, currPyr, prev_points, (10, 10), 3,
        (cv.CV_TERMCRIT_ITER | cv.CV_TERMCRIT_EPS, 20, 0.03), 0)

    #If points status are ok and distance not negligible keep the point
    k = 0
    for i in range(len(curr_points)):
        nb = abs(int(prev_points[i][0]) - int(curr_points[i][0])) + abs(
            int(prev_points[i][1]) - int(curr_points[i][1]))
        if status[i] and nb > 2:
            initial[k] = initial[i]
            curr_points[k] = curr_points[i]
            k += 1

    curr_points = curr_points[:k]
    initial = initial[:k]
    #At the end only interesting points are kept
示例#5
0
);
# Call the Lucas Kanade algorithm
#
# features_found = [ MAX_CORNERS ];
# feature_errors = [ MAX_CORNERS ];
pyr_sz = (imgA.width + 8, imgB.height / 3);
pyrA = cv.CreateImage(pyr_sz, cv.IPL_DEPTH_32F, 1);
pyrB = cv.CreateImage(pyr_sz, cv.IPL_DEPTH_32F, 1);
cornersB = [];
cornersB, features_found, feature_errors = cv.CalcOpticalFlowPyrLK(
    imgA,
    imgB,
    pyrA,
    pyrB,

    cornersA,

    # corner_count,
    (win_size, win_size),
    5,
    (cv.CV_TERMCRIT_ITER | cv.CV_TERMCRIT_EPS, 20, 0.03),
    0
);
# Now make some image of what we are looking at:
#
for i in range(100):
    if (features_found[i] == 0 or feature_errors[i] > 550):
    # printf("Error is %f/n",feature_errors[i]);
    continue;

    print("Got it");
示例#6
0
    def sd_loop(self):
        """
        The main seizure detector loop - call this function to start
        the seizure detector.
        """
        self.timeSeries = []  # array of times that data points were collected.
        self.maxFreq = None
        if (self.X11):
            cv.NamedWindow('Seizure_Detector', cv.CV_WINDOW_AUTOSIZE)
            cv.CreateTrackbar('FeatureTrackbar', 'Seizure_Detector', 0,
                              self.MAX_COUNT, self.onTrackbarChanged)
        font = cv.InitFont(cv.CV_FONT_HERSHEY_SIMPLEX, 0.5, 0.5, 0, 1, 8)

        # Intialise the video input source
        # ('camera' - may be a file or network stream though).
        #camera = cv.CaptureFromFile("rtsp://192.168.1.18/live_mpeg4.sdp")
        #camera = cv.CaptureFromFile("../testcards/testcard.mpg")
        #camera = cv.CaptureFromFile("/home/graham/laura_sample.mpeg")
        camera = cv.CaptureFromCAM(0)

        # Set the VideoWriter that produces the output video file.
        frameSize = (640, 480)
        videoFormat = cv.FOURCC('p', 'i', 'm', '1')
        # videoFormat = cv.FOURCC('l','m','p','4')
        vw = cv.CreateVideoWriter(self.videoOut, videoFormat, self.outputfps,
                                  frameSize, 1)
        if (vw == None):
            print "ERROR - Failed to create VideoWriter...."

        # Get the first frame.
        last_analysis_time = datetime.datetime.now()
        last_feature_search_time = datetime.datetime.now()
        last_frame_time = datetime.datetime.now()
        frame = cv.QueryFrame(camera)

        print "frame="
        print frame

        # Main loop - repeat forever
        while 1:
            # Carry out initialisation, memory allocation etc. if necessary
            if self.image is None:
                self.image = cv.CreateImage(cv.GetSize(frame), 8, 3)
                self.image.origin = frame.origin
                grey = cv.CreateImage(cv.GetSize(frame), 8, 1)
                prev_grey = cv.CreateImage(cv.GetSize(frame), 8, 1)
                pyramid = cv.CreateImage(cv.GetSize(frame), 8, 1)
                prev_pyramid = cv.CreateImage(cv.GetSize(frame), 8, 1)
                # self.features = []

            # copy the captured frame to our self.image object.
            cv.Copy(frame, self.image)

            # create a grey version of the image
            cv.CvtColor(self.image, grey, cv.CV_BGR2GRAY)

            # Look for features to track.
            if self.need_to_init:
                #cv.ShowImage ('loop_grey',grey)
                self.initFeatures(grey)
                self.timeSeries = []
                self.maxFreq = None
                last_analysis_time = datetime.datetime.now()
                self.need_to_init = False

            # Now track the features, if we have some.
            if self.features != []:
                # we have points to track, so track them and add them to
                # our time series of positions.
                self.features, status, track_error = cv.CalcOpticalFlowPyrLK(
                    prev_grey, grey, prev_pyramid, pyramid, self.features,
                    (self.win_size, self.win_size), 3,
                    (cv.CV_TERMCRIT_ITER | cv.CV_TERMCRIT_EPS, 20, 0.03),
                    self.flags)
                self.timeSeries.append((last_frame_time, self.features))
                print "Features..."
                for featNo in range(len(self.features)):
                    if (status[featNo] == 0):
                        self.features[featNo] = (-1, -1)
                    print status[featNo], self.features[featNo]
                # and plot them.
                for featNo in range(len(self.features)):
                    pointPos = self.features[featNo]
                    cv.Circle(self.image, (int(pointPos[0]), int(pointPos[1])),
                              3, (0, 255, 0, 0), -1, 8, 0)
                    if (self.alarmActive[featNo] == 2):
                        cv.Circle(self.image,
                                  (int(pointPos[0]), int(pointPos[1])), 10,
                                  (0, 0, 255, 0), 5, 8, 0)
                    if (self.alarmActive[featNo] == 1):
                        cv.Circle(self.image,
                                  (int(pointPos[0]), int(pointPos[1])), 10,
                                  (0, 0, 255, 0), 2, 8, 0)

                    # there will be no maxFreq data until we have
                    # run doAnalysis for the first time.
                    if (not self.maxFreq == None):
                        msg = "%d-%3.1f" % (featNo, self.maxFreq[featNo])
                        cv.PutText(
                            self.image, msg,
                            (int(pointPos[0] + 5), int(pointPos[1] + 5)), font,
                            (255, 255, 255))
                # end of for loop over features
            else:
                #print "Oh no, no features to track, and you haven't told me to look for more."
                # no features, so better look for some more...
                self.need_to_init = True

            # Is it time to analyse the captured time series.
            if ((datetime.datetime.now() - last_analysis_time).total_seconds()
                    > self.Analysis_Period):
                if (len(self.timeSeries) > 0):
                    self.doAnalysis()
                    self.doAlarmCheck()
                    last_analysis_time = datetime.datetime.now()
                else:
                    # print "Not doing analysis - no time series data..."
                    a = True

            # Is it time to re-acquire the features to track.
            if ((datetime.datetime.now() -
                 last_feature_search_time).total_seconds() >
                    self.Feature_Search_Period):
                print "resetting..."
                last_feature_search_time = datetime.datetime.now()
                self.need_to_init = True

            # save current data for use next time around.
            prev_grey, grey = grey, prev_grey
            prev_pyramid, pyramid = pyramid, prev_pyramid

            # we can now display the image
            if (self.X11): cv.ShowImage('Seizure_Detector', self.image)
            cv.WriteFrame(vw, self.image)

            # handle events
            c = cv.WaitKey(10)
            if c == 27:
                # user has press the ESC key, so exit
                break

            # Control frame rate by pausing if we are going too fast.
            frameTime = (datetime.datetime.now() - last_frame_time)\
                .total_seconds()
            actFps = 1.0 / frameTime
            if (frameTime < 1 / self.inputfps):
                cv.WaitKey(1 + int(1000. * (1. / self.inputfps - frameTime)))

            # Grab the next frame
            last_frame_time = datetime.datetime.now()
            frame = cv.QueryFrame(camera)
示例#7
0
            # refine the corner locations
            cv.FindCornerSubPix (
                grey,
                points [1],
                (win_size, win_size) (-1, -1),
                (cv.CV_TERMCRIT_ITER | cv.CV_TERMCRIT_EPS,
                                   20, 0.03))
                                               
        elif len (points [0]) > 0:
            # we have points, so display them

            # calculate the optical flow
            [points [1], status], something = cv.CalcOpticalFlowPyrLK (
                prev_grey, grey, prev_pyramid, pyramid,
                points [0], len (points [0]),
                (win_size, win_size), 3,
                len (points [0]),
                None,
                (cv.CV_TERMCRIT_ITER|cv.CV_TERMCRIT_EPS,
                                   20, 0.03),flags)

            # initializations
            point_counter = -1
            new_points = []

            for the_point in points [1]:
                # go trough all the points

                # increment the counter
                point_counter += 1

                if add_remove_pt: