示例#1
0
    def getFeatures(self, grey):
        """ 
        Returns a list of features generated by the OpenCV 
        GoodFeaturesToTrack() function in the gray scale image 'gray'.
        """
        #cv.ShowImage ('getFeatures() grey',grey)
        eig = cv.CreateImage(cv.GetSize(grey), 32, 1)
        temp = cv.CreateImage(cv.GetSize(grey), 32, 1)
        mask = cv.CreateImage(cv.GetSize(grey), 8, 1)

        # Create a mask image to hide the top 10% of the image (which contains text)
        (w, h) = cv.GetSize(grey)
        cv.Rectangle(mask, (0, 0), (w, h), cv.Scalar(255, 0, 0), -1)
        cv.Rectangle(mask, (0, 0), (w, int(0.1 * h)), cv.Scalar(0, 0, 0), -1)
        # cv.ShowImage ('mask',mask)
        # search for the good points
        feat = cv.GoodFeaturesToTrack(grey, eig, temp, self.MAX_COUNT,
                                      self.quality, self.min_distance, mask, 3,
                                      0, 0.04)
        print "found %d features (MAX_COUNT=%d)" % (len(feat), self.MAX_COUNT)
        # refine the corner locations
        feat = cv.FindCornerSubPix(
            grey, feat, (self.win_size, self.win_size), (-1, -1),
            (cv.CV_TERMCRIT_ITER | cv.CV_TERMCRIT_EPS, 20, 0.03))

        return (feat)
示例#2
0
def getthresholdedimg(im):
    #this fucntion takes the RGB image.  Then converts it into HSV for easy color detection and thresholds it with yellow part
    imghsv=cv.CreateImage(cv.GetSize(im),8,3)
    cv.CvtColor(im,imghsv,cv.CV_BGR2HSV)
    imgthreshold=cv.CreateImage(cv.GetSize(im),8,1)
    cv.InRangeS(imghsv,cv.Scalar(20,100,100),cv.Scalar(30,255,255),imgthreshold)
    return imgthreshold
def display_pts(screen_in, q, P, IND):

    # Get New Point
    print('POINT ' + str(IND) + '\n')

    # If first point, start from center
    if (IND == 0):
        pt = np.array([N / 2, M / 2])
        q.append(pt)
        cv2.circle(screen_in, (pt[0], pt[1]), 11, cv.Scalar(0, 255, 0), -1)
        return q, screen_in
    else:

        if (IND > P):
            #print('q before removal: '+str(q)+'\n')
            #q = q[1:]
            q.popleft()
            #print('q after removal: '+str(q)+'\n')

        #print('LENGTH - q =' +str(len(q))+'\n')

        pt = gen_random_pt(q[-1])
        #pt = q[-1]+R
        q.append(pt)
        for i in range(0, len(q)):
            #print(str(q[i])+' ')
            cv2.circle(screen_in, (int(q[i][0]), int(q[i][1])), 11,
                       cv.Scalar(0, 255, 0), -1)

        #print('\n')

        return q, screen_in
示例#4
0
def getthresholdedimg(im):
    imghsv = cv.CreateImage(cv.GetSize(im), 8, 3)
    cv.CvtColor(im, imghsv, cv.CV_BGR2HSV)  # Convert image from RGB to HSV
    imgthreshold = cv.CreateImage(cv.GetSize(im), 8, 1)
    cv.InRangeS(imghsv, cv.Scalar(23, 100, 100), cv.Scalar(25, 255, 255),
                imgthreshold)  ## catch the orange yellow blob
    return imgthreshold
示例#5
0
def getthresholdedimg(im):

	# this function take RGB image.Then convert it into HSV for easy colour detection 
	# and threshold it with yellow and blue part as white and all other regions as black.Then return that image
	
	global imghsv
	imghsv = cv.CreateImage(cv.GetSize(im),8,3)
	
	# Convert image from RGB to HSV
	cv.CvtColor(im,imghsv,cv.CV_BGR2HSV)
					
	# creates images for blue 
	imgblue   = cv.CreateImage(cv.GetSize(im),8,1)
	
	# creates blank image to which color images are added
	imgthreshold = cv.CreateImage(cv.GetSize(im),8,1)
	
	# determine HSV color thresholds for yellow, blue, and green
	# cv.InRange(src, lowerbound, upperbound, dst)
	# for imgblue, lowerbound is 95, and upperbound is 115
	cv.InRangeS(imghsv, cv.Scalar(55,100,100), cv.Scalar(155,255,255), imgblue)  #55/155 original, 105 seems to be lower threshold needed to eliminate flag detection
	
	# add color thresholds to blank 'threshold' image
	cv.Add(imgthreshold, imgblue,   imgthreshold)

	return imgthreshold
示例#6
0
def blink_dot(img, pt, i):  #, num_blinks):
    print('In Blink Dot')

    #for i in range(0,num_blinks):
    while 1:
        cv2.circle(img, pt, 11, cv.Scalar(255, 255, 255), -1)
        cv2.imshow("CALIB_SCREEN", img)
        key = cv.WaitKey(500)

        img = np.zeros(img.shape)
        cv2.imshow("CALIB_SCREEN", img)
        key = cv.WaitKey(500)

        if (key == 27):
            print('Dot Skipped!!')
            return

        if (key == 99):
            # If c is pressed, capture images
            capture_imgs(i)

            # Blink a Green Dot
            cv2.circle(img, pt, 11, cv.Scalar(0, 255, 0), -1)
            cv2.imshow("CALIB_SCREEN", img)
            key = cv.WaitKey(500)

            img = np.zeros(img.shape)
            cv2.imshow("CALIB_SCREEN", img)
            key = cv.WaitKey(500)

            return
示例#7
0
文件: gui.py 项目: ArgyleStoat/rompar
def on_mouse_left(img_x, img_y, flags, param):
    self = param

    # Edit data
    if self.data_read:
        # find nearest intersection and toggle its value
        for x in self.grid_points_x:
            if img_x >= x - self.config.radius / 2 and img_x <= x + self.config.radius / 2:
                for y in self.grid_points_y:
                    if img_y >= y - self.config.radius / 2 and img_y <= y + self.config.radius / 2:
                        value = toggle_data(self, x, y)
                        #print self.img_target[x, y]
                        #print 'value', value
                        if value == '0':
                            cv.Circle(self.img_grid, (x, y),
                                      self.config.radius,
                                      cv.Scalar(0xff, 0x00, 0x00),
                                      thickness=2)
                        else:
                            cv.Circle(self.img_grid, (x, y),
                                      self.config.radius,
                                      cv.Scalar(0x00, 0xff, 0x00),
                                      thickness=2)

                        show_image(self)
    # Edit grid
    else:
        #if not Target[img_y, img_x]:
        if flags != cv.CV_EVENT_FLAG_SHIFTKEY and not get_pixel(
                self, img_y, img_x):
            print 'autocenter: miss!'
            return

        if img_x in self.grid_points_x:
            return
        # only draw a single line if this is the first one
        if len(self.grid_points_x) == 0 or self.group_cols == 1:
            if flags != cv.CV_EVENT_FLAG_SHIFTKEY:
                img_x, img_y = auto_center(self, img_x, img_y)

            # don't try to auto-center if shift key pressed
            draw_line(self, img_x, img_y, 'V', False)
            self.grid_points_x.append(img_x)
            if self.group_rows == 1:
                draw_line(self, img_x, img_y, 'V', True)
        else:
            # set up auto draw
            if len(self.grid_points_x) == 1:
                # use a float to reduce rounding errors
                self.step_x = float(img_x - self.grid_points_x[0]) / (
                    self.group_cols - 1)
                # reset stored self.data as main loop will add all entries
                img_x = self.grid_points_x[0]
                self.grid_points_x = []
                update_radius(self)
            # draw a full set of self.group_cols
            for x in range(self.group_cols):
                draw_x = int(img_x + x * self.step_x)
                self.grid_points_x.append(draw_x)
                draw_line(self, draw_x, img_y, 'V', True)
示例#8
0
def getthresholdedimg(im):
    '''this function take RGB image.Then convert it into HSV for easy colour detection and threshold it with yellow part as white and all other regions as black.Then return that image'''
    imghsv = cv.CreateImage(cv.GetSize(im), 8, 3)
    cv.CvtColor(im, imghsv, cv.CV_BGR2HSV)  # Convert image from RGB to HSV
    imgthreshold = cv.CreateImage(cv.GetSize(im), 8, 1)
    cv.InRangeS(imghsv, cv.Scalar(20, 100, 100), cv.Scalar(30, 255, 255),
                imgthreshold)  # Select a range of yellow color
    return imgthreshold
示例#9
0
def thresholdImage(img):
    # allocate temp image based on size of input img
    img_hsv = cv.CreateImage((img.width, img.height), 8, 3)  # 3 channel
    img_thresh = cv.CreateImage((img.width, img.height), 8, 1)  # 1 channel

    cv.CvtColor(img, img_hsv, cv.CV_BGR2HSV)
    cv.InRangeS(img_hsv, cv.Scalar(0, 100, 100), cv.Scalar(43, 255, 255),
                img_thresh)

    return (img_thresh)
示例#10
0
文件: lrf.py 项目: Mnemonic7/lrf
def result_image(img, posX, posY, distance):
    hScale = 0.5
    vScale = 0.5
    lineWidth = 1
    font = cv.InitFont(cv.CV_FONT_HERSHEY_SIMPLEX | cv.CV_FONT_ITALIC, hScale,
                       vScale, 0, lineWidth)
    cv.PutText(img, ("%0.2fcm" % distance), (10, 20), font,
               cv.Scalar(0, 255, 255))
    cv.Circle(img, (posX, posY), 15, cv.Scalar(0, 255, 0), 2)
    cv.Circle(img, (posX, posY), 2, cv.Scalar(0, 255, 0), 2)
    return img
    def draw_crossway(self, image, vertex_array, is_nearmiss):
        overlay = image.copy()

        color = cv.Scalar(255, 0, 0)
        if is_nearmiss:
            color = cv.Scalar(0, 0, 255)
        pts = numpy.array(vertex_array, numpy.int32)
        pts = pts.reshape((-1, 1, 2))
        cv2.fillConvexPoly(overlay, pts, color)
        alpha = 0.5
        cv2.addWeighted(overlay, alpha, image, 1 - alpha, 0, image)
示例#12
0
def getThresholdImage(im):
    newim = cv.CloneImage(im)
    cv.Smooth(newim, newim, cv.CV_BLUR, 12)  #Remove noise

    hsv = cv.CreateImage(cv.GetSize(im), 8, 3)
    cv.CvtColor(newim, hsv, cv.CV_BGR2HSV)  # Convert image to HSV
    imThreshed = cv.CreateImage(cv.GetSize(im), 8, 1)
    #Do the threshold on the hsv image, with the right range for the yellow color
    cv.InRangeS(hsv, cv.Scalar(20, 100, 100), cv.Scalar(30, 255, 255),
                imThreshed)
    del hsv
    return imThreshed
示例#13
0
def read_data(self, data_ref=None, force=False):
    if not force and not self.data_read:
        return

    redraw_grid(self)

    # maximum possible value if all pixels are set
    maxval = (self.config.radius * self.config.radius) * 255
    print 'read_data max aperture value:', maxval

    if data_ref:
        print 'read_data: loading reference data (%d entries)' % len(data_ref)
        print 'Grid intersections: %d' % len(self.grid_intersections)
        self.data = data_ref
    else:
        print 'read_data: computing'
        # Compute
        self.data = []
        for x, y in self.grid_intersections:
            value = 0
            # FIXME: misleading
            # This isn't a radius but rather a bounding box
            for xx in range(x - (self.config.radius / 2),
                            x + (self.config.radius / 2)):
                for yy in range(y - (self.config.radius / 2),
                                y + (self.config.radius / 2)):
                    value += get_pixel(self, yy, xx)
            if value > maxval / self.config.bit_thresh_div:
                self.data.append('1')
            else:
                self.data.append('0')

    # Render
    for i, (x, y) in enumerate(self.grid_intersections):
        if self.data[i] == '1':
            cv.Circle(self.img_grid, (x, y),
                      self.config.radius,
                      cv.Scalar(0x00, 0xff, 0x00),
                      thickness=2)
            # highlight if we're in edit mode
            if y == self.Edit_y:
                sx = self.Edit_x - (self.Edit_x % self.group_cols)
                if self.grid_points_x.index(
                        x) >= sx and self.grid_points_x.index(
                            x) < sx + self.group_cols:
                    cv.Circle(self.img_grid, (x, y),
                              self.config.radius,
                              cv.Scalar(0xff, 0xff, 0xff),
                              thickness=2)
        else:
            pass
    self.data_read = True
示例#14
0
 def drawLagoons(self, image) :
     global toggle
     global lagoon
     cler = [cv.Scalar(0,0,255,255),cv.Scalar(0,255,255,255),cv.Scalar(255,0,0,255),cv.Scalar(255,0,255,255)]
     i = 0
     for bb in lagoon.values():
         cv2.rectangle(image,(bb[0],bb[1]),(bb[0]+bb[2],bb[1]+bb[3]),cler[i%4],1)
         cv2.circle(image,(bb[0],bb[1]),5,cler[(i+1)%4],2)
         i = i + 1
     if (image != None) :
         self.evocv2.showUser(image)
     else :
         plog(">>>>drawLagoons>>>\nimage was None in drawLagoons\n>>>>>>")
示例#15
0
def getContour(cvImg):
    lowerBound = cv.Scalar(0, 0, 0)
    upperBound = cv.Scalar(3, 3, 3)
    size = cv.GetSize(cvImg)
    output = cv.CreateMat(size[0], size[1], cv.CV_8UC1)
    cv.InRangeS(cvImg, lowerBound, upperBound, output)

    storage = cv.CreateMemStorage(0)
    seq = cv.FindContours(output, storage, cv.CV_RETR_LIST,
                          cv.CV_CHAIN_APPROX_SIMPLE)
    mask = np.array(output)
    y, x = np.nonzero(mask)
    return (x, y)
示例#16
0
 def drawRects(self, image, outlines):
     # Create a different set of colors so the outlines are distinct
     cset = [
         cv.Scalar(128, 0, 255, 255),
         cv.Scalar(255, 0, 0, 255),
         cv.Scalar(0, 255, 128, 255),
         cv.Scalar(0, 0, 255, 255)
     ]
     i = 0
     for r in outlines:
         cv2.rectangle(image, (r[0], r[1]), (r[2], r[3]), cset[i % 4], 1)
         cv2.circle(image, (r[0], r[1]), 5, cset[(i + 1) % 4], 2)
         i = i + 1
     self.showUser(image)
示例#17
0
 def drawBbs(self, image, outlines):
     # Create a set of colors so the outlines are distinct
     cset = [
         cv.Scalar(0, 0, 255, 255),
         cv.Scalar(0, 255, 255, 255),
         cv.Scalar(255, 0, 0, 255),
         cv.Scalar(255, 0, 255, 255)
     ]
     i = 0
     for bb in outlines:
         cv2.rectangle(image, (bb[0], bb[1]),
                       (bb[0] + bb[2], bb[1] + bb[3]), cset[i % 4], 1)
         cv2.circle(image, (bb[0], bb[1]), 5, cset[(i + 1) % 4], 2)
         i = i + 1
     self.showUser(image)
示例#18
0
文件: lrf.py 项目: Mnemonic7/lrf
def show_camera_and_wait_for_key(capture, timeout=5, mapx=None, mapy=None):
    img = capture_image(capture, mapx, mapy)
    size = cv.GetSize(img)
    centerx = size[0] / 2
    centery = size[1] / 2
    crosslen = 4
    cv.Line(img, (0, centery), (size[0], centery), cv.Scalar(255, 255, 0))
    cv.Line(img, (centerx, 0), (centerx, size[1]), cv.Scalar(255, 255, 0))
    cv.Line(img, (centerx - crosslen, centery), (centerx + crosslen, centery),
            cv.Scalar(255, 255, 0), 2)
    cv.Line(img, (centerx, centery - crosslen), (centerx, centery + crosslen),
            cv.Scalar(255, 255, 0), 2)

    cv.ShowImage('camera', img)
    k = cv.WaitKey(timeout)
    return img, k
示例#19
0
def random_color(random):
    """
    Return a random color
    """
    icolor = random.randint(0, 0xFFFFFF)
    return cv.Scalar(icolor & 0xff, (icolor >> 8) & 0xff,
                     (icolor >> 16) & 0xff)
示例#20
0
 def _random_color(self, name):
     """
     Return a random color
     """
     icolor = abs(hash(name)) % 0xFFFFFF
     return cv.Scalar(icolor & 0xff, (icolor >> 8) & 0xff,
                      (icolor >> 16) & 0xff)
示例#21
0
def redraw_grid(self):
    if not self.gui:
        return
    cv.Set(self.img_grid, cv.Scalar(0, 0, 0))
    cv.Set(self.img_peephole, cv.Scalar(0, 0, 0))
    self.grid_intersections = []
    self.grid_points_x.sort()
    self.grid_points_y.sort()

    for x in self.grid_points_x:
        cv.Line(self.img_grid, (x, 0), (x, self.img_target.height),
                cv.Scalar(0xff, 0x00, 0x00), 1)
        for y in self.grid_points_y:
            self.grid_intersections.append((x, y))
    self.grid_intersections.sort()
    for y in self.grid_points_y:
        cv.Line(self.img_grid, (0, y), (self.img_target.width, y),
                cv.Scalar(0xff, 0x00, 0x00), 1)
    for x, y in self.grid_intersections:
        cv.Circle(self.img_grid, (x, y),
                  self.config.radius,
                  cv.Scalar(0x00, 0x00, 0x00),
                  thickness=-1)
        cv.Circle(self.img_grid, (x, y),
                  self.config.radius,
                  cv.Scalar(0xff, 0x00, 0x00),
                  thickness=1)
        cv.Circle(self.img_peephole, (x, y),
                  self.config.radius + 1,
                  cv.Scalar(0xff, 0xff, 0xff),
                  thickness=-1)
示例#22
0
文件: opencv4.py 项目: arshibassi/UAV
def drawGraph(ar, im, size):  #Draw the histogram on the image
    minV, maxV, minloc, maxloc = cv.MinMaxLoc(ar)  #Get the min and max value
    hpt = 0.9 * histsize
    for i in range(size):
        intensity = ar[
            i] * hpt / maxV  #Calculate the intensity to make enter in the image
        cv.Line(im, (i, size), (i, int(size - intensity)),
                cv.Scalar(255, 255, 255))  #Draw the line
        i += 1
示例#23
0
def centerRadius(cvImg, ColorLower=None, ColorUpper=None):
    lowerBound = cv.Scalar(90, 0, 90)
    upperBound = cv.Scalar(171, 80, 171)
    size = cv.GetSize(cvImg)
    output = cv.CreateMat(size[0], size[1], cv.CV_8UC1)
    cv.InRangeS(cvImg, lowerBound, upperBound, output)

    yi, xi = np.nonzero(output)
    #points = np.array([xi,yi]).T
    #coords = [tuple(points[pt]) for pt in range(len(points))]
    coords = zip(xi, yi)
    PointArray2D32f = cv.CreateMat(1, len(coords), cv.CV_32FC2)
    for (i, (x, y)) in enumerate(coords):
        PointArray2D32f[0, i] = (x, y)
    (center, size, angle) = cv.FitEllipse2(PointArray2D32f)
    h, k = center
    radius = np.sqrt(np.power((xi[0] - h), 2) + np.power(yi[0] - k, 2))
    return tuple(np.around([h, k])), round(radius)
示例#24
0
文件: rompar.py 项目: fourks/rompar
def show_data():
    global Hex
    global Display_Data
    global Display_Binary
    global Search_HEX
    global Grid_Points_x
    global Grid_Points_y
    global Font
    global Data_Read
    global Radius

    if not Data_Read:
        return

    cv.Set(Hex, cv.Scalar(0, 0, 0))
    print
    dat = get_all_data()
    for row in range(Grid_Entries_y):
        out = ''
        outbin = ''
        for column in range(Grid_Entries_x / Bits):
            thisbyte = ord(dat[column * Grid_Entries_y + row])
            hexbyte = '%02X ' % thisbyte
            out += hexbyte
            outbin += to_bin(thisbyte) + ' '
            if Display_Binary:
                dispdata = to_bin(thisbyte)
            else:
                dispdata = hexbyte
            if Display_Data:
                if Search_HEX and Search_HEX.count(thisbyte):
                    cv.PutText(Hex, dispdata,
                               (Grid_Points_x[column * Bits],
                                Grid_Points_y[row] + Radius / 2 + 1), Font,
                               cv.Scalar(0x00, 0xff, 0xff))
                else:
                    cv.PutText(Hex, dispdata,
                               (Grid_Points_x[column * Bits],
                                Grid_Points_y[row] + Radius / 2 + 1), Font,
                               cv.Scalar(0xff, 0xff, 0xff))
        print outbin
        print
        print out
    print
示例#25
0
def gen_mask(frec, tpoly):

    mask = cv.CreateMat(int(np.round(frec.height())),
                        int(np.round(frec.width())), cv.CV_8UC1)
    cv.Zero(mask)
    pts = tuple((int(np.round(x - frec.left)), int(np.round(y - frec.top)))
                for (x, y) in tpoly.contour(0))
    cv.FillPoly(mask, [pts], cv.Scalar(1), lineType=8, shift=0)

    return np.asarray(mask)
示例#26
0
def findImage(img):
    #Set up storage for images
    frame_size = cv.GetSize(img)
    img2 = cv.CreateImage(frame_size,8,3)
    tmp = cv.CreateImage(frame_size,8,cv.CV_8U)
    h = cv.CreateImage(frame_size,8,1)

    #copy original image to do work on
    cv.Copy(img,img2)

    #altering the image a bit for smoother processing
    cv.Smooth(img2,img2,cv.CV_BLUR,3)
    cv.CvtColor(img2,img2,cv.CV_BGR2HSV)

    #make sure temp is empty
    cv.Zero(tmp)

    #detection based on HSV value
    #30,100,90 lower limit on pic 41,255,255 on pic
    #cv.InRangeS(img2,cv.Scalar(25,100,87),cv.Scalar(50,255,255),tmp)
    #Range for green plate dot in my Living room
    #cv.InRangeS(img2,cv.Scalar(55,80,60),cv.Scalar(65,95,90),tmp)
    #classroom
    #cv.InRangeS(img2,cv.Scalar(55,80,60),cv.Scalar(70,110,70),tmp)
    #Kutztowns Gym
    cv.InRangeS(img2,cv.Scalar(65,100,112),cv.Scalar(85,107,143),tmp)

    elmt_shape=cv.CV_SHAPE_ELLIPSE
    pos = 3
    element = cv.CreateStructuringElementEx(pos*2+1, pos*2+1, pos, pos, elmt_shape)
    cv.Dilate(tmp,tmp,element,6)
    cv.Erode(tmp,tmp,element,2)

    cv.Split(tmp,h,None,None,None)
    storage = cv.CreateMemStorage()

    scan = sc.FindContours(h,storage)
    xyImage=drawCircles(scan,img)

    if xyImage != None:
            return (xyImage,tmp)
    else:
            return None
示例#27
0
def colorFilter(img, color, calibrate):

    imgHSV = cv.CreateImage(cv.GetSize(img), 8, 3)
    cv.CvtColor(img, imgHSV, cv.CV_BGR2HSV)

    if color == "yellow":
        minColor = cv.Scalar(20, 70, 70)
        maxColor = cv.Scalar(60, 255, 255)
    elif color == "blue":
        minColor = cv.Scalar(100, 100, 100)
        maxColor = cv.Scalar(120, 255, 255)
    elif color == "calibrate":
        minColor = cv.Scalar(calibrate[0], calibrate[1], calibrate[2])
        maxColor = minColor

    imgFiltered = cv.CreateImage(cv.GetSize(img), 8, 1)

    cv.InRangeS(imgHSV, minColor, maxColor, imgFiltered)

    return imgFiltered
示例#28
0
 def test_40_tostringRepeat(self):
     cnt = 0
     image = cv.CreateImage(self.size, cv.IPL_DEPTH_8U, 1)
     cv.Set(image, cv.Scalar(0, 0, 0, 0))
     for i in range(self.repeat * 100):
         image.tostring()
     cnt = cv.CountNonZero(image)
     self.assertEqual(cnt,
                      0,
                      msg="Repeating tostring(): Mean CountNonZero=%.3f" %
                      (1. * cnt / self.repeat))
示例#29
0
 def drawPlate(self, plate=True):
     pos1 = (self.select.startX, self.select.startY)
     pos2 = (self.select.endX, self.select.endY)
     if (pos1[0] > pos2[0]) or (pos1[1] > pos2[1]):
         cor1 = cv.Scalar(0, 0, 255, 0)
         cor2 = cv.Scalar(255, 255, 255, 0)
         thick = 8
     else:
         cor1 = cv.Scalar(36, 186, 255, 0)
         cor2 = cv.Scalar(8, 44, 72, 0)
         thick = 4
     numpyImg = cv2.resize(numpy.asarray(self.src[:, :]), (0, 0),
                           fx=self.fx,
                           fy=self.fy)
     cimg = cv.fromarray(numpyImg)
     # draw plate if setted
     if plate:
         cv.Rectangle(cimg, pos1, pos2, cor1, thickness=thick)
         cv.Rectangle(cimg, pos1, pos2, cor2, thickness=2)
     cv.ShowImage("Camera", cimg)
示例#30
0
文件: rompar.py 项目: fourks/rompar
def read_data():
    global Grid_Intersections
    global Grid_Entries_x
    global Grid_Entries_y
    global Radius
    global Target
    global Bits
    global Data_Read
    global Data
    global Inverted

    redraw_grid()

    # maximum possible value if all pixels are set
    maxval = (Radius * Radius) * 255
    print 'max:', maxval

    Data = []
    for x, y in Grid_Intersections:
        value = 0
        for xx in range(x - (Radius / 2), x + (Radius / 2)):
            for yy in range(y - (Radius / 2), y + (Radius / 2)):
                value += get_pixel(yy, xx)
        if value > maxval / ReadVal:
            cv.Circle(Grid, (x, y),
                      Radius,
                      cv.Scalar(0x00, 0xff, 0x00),
                      thickness=2)
            # highlight if we're in edit mode
            if y == Edit_y:
                sx = Edit_x - (Edit_x % Bits)
                if Grid_Points_x.index(x) >= sx and Grid_Points_x.index(
                        x) < sx + Bits:
                    cv.Circle(Grid, (x, y),
                              Radius,
                              cv.Scalar(0xff, 0xff, 0xff),
                              thickness=2)
            Data.append('1')
        else:
            Data.append('0')
    Data_Read = True