示例#1
0
    def read_image_sequence(self, video_name: str):
        self.set_image_sequence_name(video_name)

        # Set video directory
        video_dir = os_path_join(
            self.im_seqs_dir,
            video_name
        )
        # List all the images included inside the video directory
        images_names = os_listdir(video_dir)

        # Sort the images with respect to their name
        sorted_images_names = sorted(images_names)

        # Read every image and store it in a list.
        # Turn this list to a numpy array.
        """ In an example the colors where not right
        self.image_sequence = np_array(
            [self.image_handler.load_image(os_path_join(video_dir, img_name)) for img_name in sorted_images_names]
        )
        """
        self.image_sequence = np_array(
            [cv2_imread(os_path_join(video_dir, img_name)) for img_name in sorted_images_names]
        )

        return self.image_sequence
示例#2
0
def img_load(path, w, h, resize=True):
    img = cv2_imread(path)
    if len(img.shape) == 2:
        img = np.dstack((img, img, img))
    if resize:
        img = cv2_resize(img, (w, h)).astype(np.uint8)
    img = cvtColor(img, COLOR_BGR2RGB)
    return img
示例#3
0
    def read_image_sequence(self, video_name: str):
        self.set_image_sequence_name(video_name)

        # Set video directory
        video_dir = os_path_join(self.im_seqs_dir, video_name)
        # List all the images included inside the video directory
        images_names = os_listdir(video_dir)

        # Sort the images with respect to their name
        sorted_images_names = sorted(images_names)

        # Read every image and store it in a list.
        # Turn this list to a numpy array.
        self.left_sequence = np_array([
            cv2_imread(os_path_join(video_dir, img_name))
            for img_name in sorted_images_names if img_name.endswith('L.jpg')
        ])
        self.right_sequence = np_array([
            cv2_imread(os_path_join(video_dir, img_name))
            for img_name in sorted_images_names if img_name.endswith('R.jpg')
        ])
        return self.left_sequence, self.right_sequence
示例#4
0
    def image_search(self, path, threshold=0.7, max_n=50):
        """
        Search similar logos

        @param: path : the complete path to the image file
        @returns: two list of 'Logo' instance, where the first one contains good matches, and the second normal ones
        """
        im = cv2_imread(path)

        if im is None:
            print("No image at '%s' ,match failed!" % path)
            return [], []

        im = im[:,:,::-1] # BGR -> RGB

        logo_inds_s, scores_s = self._image_search_sift(im, max_n=50)
        logo_inds_c, scores_c = self._image_search_color(im, max_n=50)

        scores = {}

        r = 0.5 # the ratio between color score and sift score

        for ind, score in zip(logo_inds_s, scores_s):
            scores.setdefault(ind, 0)
            scores[ind] += r * score 

        for ind, score in zip(logo_inds_c, scores_c):
            scores.setdefault(ind, 0)
            scores[ind] += (1-r) * score 

        logo_inds = np.array(scores.keys())
        scores = np.array(scores.values())

        # get max_n
        max_n = min(np.sum(scores > threshold / 4), max_n)
        inds = np.argpartition(scores, -max_n)[-max_n:]
        inds = inds[np.argsort(scores[inds])][::-1]

        scores = scores[inds]
        logo_inds = logo_inds[inds]

        logo_inds += 1  # ind begins with 1
        logos = self.get_logos_from_db(logo_inds)

        good = []
        normal = []

        for logo, score in zip(logos, scores):
            (good if score > threshold else normal).append(logo)

        return good, normal
示例#5
0
def load_path(path):
    img = cv2_imread(path)
    if len(img.shape) == 2:
        img = np.dstack((img, img, img))
    img = cvtColor(img, COLOR_BGR2RGB)
    return img
def get_im_cv2_1024(path):
    img = cv2_imread(path)
    resized = cv2_resize(img, (1024, 1024), cv2_INTER_AREA)
    return [path, resized]
def get_im_cv2_512(path):
    img = cv2_imread(path)
    resized = cv2_resize(img, (512, 512), cv2_INTER_AREA)
    return [path, resized]
def get_im_cv2_256(path):
    img = cv2_imread(path)
    resized = cv2_resize(img, (256, 256), cv2_INTER_AREA)
    return [path, resized]
def get_im_cv2_64(path):
    img = cv2_imread(path)
    resized = cv2_resize(img, (64, 64), cv2_INTER_AREA)
    return [path, resized]
def get_im_cv2_32(path):
    img = cv2_imread(path)
    resized = cv2_resize(
        img, (32, 32),
        cv2_INTER_AREA)  #use cv2_resize(img, (64, 64), cv2_INTER_AREA)
    return [path, resized]