示例#1
0
    def get_transformed_centroids(self, reference_centroids=None):
        def get_transformed_tumor_centroids(gtvs, transform):
            #finds the mean organ centroid locations and applies an affine transform
            #to each of the centroids in the current dataset
            #returns a transformed 3d centroid matrix and a list of arrays with new tumor centroid positions
            nonzero_centroids = [g.position for g in gtvs if g.volume > 0]
            t_centroids = np.ones((len(nonzero_centroids), 4))
            pos = 0
            for gtv in nonzero_centroids:
                t_centroids[pos, 0:3] = gtv
                pos += 1
            new_centroids = np.dot(transform, t_centroids.T).T
            return new_centroids

        if reference_centroids is None:
            reference_centroids = self.centroids.mean(axis=0)
        transformed_tumor_centroids = []
        transformed_organ_centroids = np.empty(self.centroids.shape)
        for p in range(self.get_num_patients()):
            centroids = self.centroids[p, :, :]
            transform = estimateAffine3D(centroids, reference_centroids)[1]
            ref = np.hstack([centroids, np.ones((Constants.num_organs, 1))])
            transformed_centroids = np.dot(transform, ref.T)
            transformed_organ_centroids[p, :, :] = transformed_centroids.T
            p_tumor_centroids = get_transformed_tumor_centroids(
                self.gtvs[p], transform)
            transformed_tumor_centroids.append(p_tumor_centroids)
        return transformed_organ_centroids, transformed_tumor_centroids
示例#2
0
def estimateRestrictedAffineTransform(source: np.array,
                                      target: np.array,
                                      verbose=False):
    SourceHom = np.transpose(np.hstack([source,
                                        np.ones([source.shape[0], 1])]))
    TargetHom = np.transpose(np.hstack([target,
                                        np.ones([source.shape[0], 1])]))

    RetVal, AffineTrans, Inliers = cv2.estimateAffine3D(source, target)
    # We assume no shear in the affine matrix and decompose into rotation, non-uniform scales, and translation
    Translation = AffineTrans[:3, 3]
    NUScaleRotMat = AffineTrans[:3, :3]
    # NUScaleRotMat should be the matrix SR, where S is a diagonal scale matrix and R is the rotation matrix (equivalently RS)
    # Let us do the SVD of NUScaleRotMat to obtain R1*S*R2 and then R = R1 * R2
    R1, ScalesSorted, R2 = np.linalg.svd(NUScaleRotMat, full_matrices=True)

    if verbose:
        print(
            '-----------------------------------------------------------------------'
        )
    # Now, the scales are sort in ascending order which is painful because we don't know the x, y, z scales
    # Let's figure that out by evaluating all 6 possible permutations of the scales
    ScalePermutations = list(itertools.permutations(ScalesSorted))
    MinResidual = 1e8
    Scales = ScalePermutations[0]
    OutTransform = np.identity(4)
    Rotation = np.identity(3)
    for ScaleCand in ScalePermutations:
        CurrScale = np.asarray(ScaleCand)
        CurrTransform = np.identity(4)
        CurrRotation = (np.diag(1 / CurrScale) @ NUScaleRotMat).transpose()
        CurrTransform[:3, :3] = np.diag(CurrScale) @ CurrRotation
        CurrTransform[:3, 3] = Translation
        # Residual = evaluateModel(CurrTransform, SourceHom, TargetHom)
        Residual = evaluateModelNonHom(source, target, CurrScale, CurrRotation,
                                       Translation)
        if verbose:
            # print('CurrTransform:\n', CurrTransform)
            print('CurrScale:', CurrScale)
            print('Residual:', Residual)
            print('AltRes:',
                  evaluateModelNoThresh(CurrTransform, SourceHom, TargetHom))
        if Residual < MinResidual:
            MinResidual = Residual
            Scales = CurrScale
            Rotation = CurrRotation
            OutTransform = CurrTransform

    if verbose:
        print('Best Scale:', Scales)

    if verbose:
        print('Affine Scales:', Scales)
        print('Affine Translation:', Translation)
        print('Affine Rotation:\n', Rotation)
        print(
            '-----------------------------------------------------------------------'
        )

    return Scales, Rotation, Translation, OutTransform
示例#3
0
def bounding_box_transform(set1, set2):
    src = np.array([set1], copy=True).astype(np.float32)
    dst = np.array([set2], copy=True).astype(np.float32)

    t = cv2.estimateAffine3D(src, dst, confidence=0.99)

    return t[1]
示例#4
0
def ransac_align_points(
    pA, pB, threshold, diagonal_constraint=0.75, default=np.eye(4)[:3],
):
    """
    """

    # sensible requirement of 51 or more spots to compute ransac affine
    if len(pA) <= 50 or len(pB) <= 50:
        if default is not None:
            print("Insufficient spot matches for ransac, returning default identity")
            return default
        else:
            raise ValueError("Insufficient spot matches for ransac, need more than 50")

    # compute the affine
    r, Aff, inline = cv2.estimateAffine3D(pA, pB, ransacThreshold=threshold, confidence=0.999)

    # rarely ransac just doesn't work (depends on data and parameters)
    # sensible choices for hard constraints on the affine matrix
    if np.any( np.diag(Aff) < diagonal_constraint ):
        if default is not None:
            print("Degenerate affine produced, returning default identity")
            return default
        else:
            raise ValueError("Degenerate affine produced, ransac failed")

    return Aff
示例#5
0
文件: PointCloud.py 项目: uh-cbl/FaRE
    def register_icp(self, max_iter=20, tolerance=1e-4):
        """
        point to point matching using interative closest points
        :param max_iter: maximum number of iteration
        :param tolerance: tolerance to stop algorithm
        :return:
        """
        point_a = self.moving_points
        point_b = self.fixed_points

        pre_rmse = 0
        pvmse = None

        for it in range(max_iter):
            # find the correspondence
            nbrs = NearestNeighbors(n_neighbors=1, n_jobs=-1).fit(point_b)
            dist, ind = nbrs.kneighbors(point_a)

            # estimate transformation given correspondence
            point_c = point_b[ind.flatten()]
            # point_c = point_c - np.mean(point_c, axis=0)
            # point_a = point_a - np.mean(point_a, axis=0)

            # f = plt.figure()
            # ax = Axes3D(f)
            # ax.scatter(point_a[:, 0], point_a[:, 1], point_a[:, 2], c='g')
            # ax.scatter(point_c[:, 0], point_c[:, 1], point_c[:, 2], c='r')
            # plt.show()

            # Update the transformation
            M = cv2.estimateAffine3D(point_a, point_c)
            # compute new location
            point_a = np.hstack((point_a, np.ones((point_a.shape[0], 1))))
            point_a = np.dot(point_a, M[1].transpose())

            # f = plt.figure()
            # ax = Axes3D(f)
            # ax.scatter(point_c[:, 0], point_c[:, 1], point_c[:, 2], c='r')
            # ax.scatter(point_a[:, 0], point_a[:, 1], point_a[:, 2], c='g')
            # plt.show()

            # print('debug')
            # compute rmse
            err = np.sum(np.square(point_a - point_c), axis=1)
            rmse = np.sqrt(np.sum(err) / len(err))

            if abs(rmse - pre_rmse) < tolerance:
                pre_rmse = rmse
                pvmse = err / 3
                break
            else:
                pre_rmse = rmse
                pvmse = err / 3

            # print(rmse)

        return pvmse, pre_rmse
def createTransformFunc(ptPairs, direction):
    """
    Returns a function that takes a point (x,y,z) of a camera coordinate, and returns the robot (x,y,z) for that point
    Direction is either "toRob" or "toCam".
    If "toCam" it will return a Robot-->Camera transform
    If "toRob" it will return a Camera-->Robot transform
    """


    ptPairArray = np.asarray(ptPairs)
    if direction == "toRob":
        pts1 = ptPairArray[:, 0]
        pts2 = ptPairArray[:, 1]

    if direction == "toCam":
        pts1 = ptPairArray[:, 1]
        pts2 = ptPairArray[:, 0]


    # Generate the transformation matrix
    ret, M, mask = cv2.estimateAffine3D(np.float32(pts1),
                                        np.float32(pts2),
                                        confidence = .9999999)

    if not ret: printf("RobotVision| ERROR: Transform failed!")

    # Returns a function that will perform the transformation between pointset 1 and pointset 2 (if direction is == 1)

    transformFunc = lambda x: np.array((M * np.vstack((np.matrix(x).reshape(3, 1), 1)))[0:3, :].reshape(1, 3))[0]


    """
    Breakdown of function. Here's an example of transforming [95, -35, 530] cam which is [5, 15, 15] in the robot grid

    First:
    [95, -35, 530]

    np.vstack((np.matrix(input).reshape(3, 1), 1))  is applied, converts it to a vertical array
    [[ 95]
     [-35]
     [530]
     [  1]]

    M * np.vstack((np.matrix(x).reshape(3, 1), 1))  (transformation matrix multiplied by the previous number)
    [[  5.8371337 ]
     [ 15.72722685]
     [ 14.5007519 ]]

     There you go. The rest of it is simply converting that matrix into
     [5.83, 15.72, 14.5]

     but you know, without the rounding.

    """

    return transformFunc
示例#7
0
文件: test.py 项目: tuoxie2046/opencv
 def test_estimateAffine3D(self):
     pattern_size = (11, 8)
     pattern_points = np.zeros((np.prod(pattern_size), 3), np.float32)
     pattern_points[:,:2] = np.indices(pattern_size).T.reshape(-1, 2)
     pattern_points *= 10
     (retval, out, inliers) = cv2.estimateAffine3D(pattern_points, pattern_points)
     self.assertEqual(retval, 1)
     if cv2.norm(out[2,:]) < 1e-3:
         out[2,2]=1
     self.assertLess(cv2.norm(out, np.float64([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]])), 1e-3)
     self.assertEqual(cv2.countNonZero(inliers), pattern_size[0]*pattern_size[1])
示例#8
0
文件: test2.py 项目: 4auka/opencv
 def test_estimateAffine3D(self):
     pattern_size = (11, 8)
     pattern_points = np.zeros((np.prod(pattern_size), 3), np.float32)
     pattern_points[:,:2] = np.indices(pattern_size).T.reshape(-1, 2)
     pattern_points *= 10
     (retval, out, inliers) = cv2.estimateAffine3D(pattern_points, pattern_points)
     self.assertEqual(retval, 1)
     if cv2.norm(out[2,:]) < 1e-3:
         out[2,2]=1
     self.assertLess(cv2.norm(out, np.float64([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]])), 1e-3)
     self.assertEqual(cv2.countNonZero(inliers), pattern_size[0]*pattern_size[1])
def estimate_extrinsics(dataset):
    """
    Estimate Extrinsic parameters from world to cam point correspondences
    :param dataset:
    :return:
    """
    # extrinsics are matrices M of shape (3,4) for every datapoint --> M = [R,t] where R=rotation matrix and t = translation vector
    camera_extrinsics_univ = np.zeros(
        (dataset.datadict["keypoints_3d_univ"].shape[0], 3, 4), dtype=np.float)
    camera_extrinsics = np.zeros(
        (dataset.datadict["keypoints_3d"].shape[0], 3, 4), dtype=np.float)

    for i, vid in enumerate(
            tqdm(
                np.unique(dataset.datadict["v_ids"]),
                desc="Estimate extrinsics per video",
            )):
        ids = dataset.datadict["v_ids"] == vid
        kps3d_c = dataset.datadict["keypoints_3d"][ids]
        kps3d_c_univ = dataset.datadict["keypoints_3d_univ"][ids]
        kps3d_w = dataset.datadict["keypoints_3d_world"][ids]
        kps3d_c = np.reshape(kps3d_c, (-1, 3))
        kps3d_c_univ = np.reshape(kps3d_c_univ, (-1, 3))
        kps3d_w = np.reshape(kps3d_w, (-1, 3))

        _, M, _ = cv2.estimateAffine3D(kps3d_w,
                                       kps3d_c,
                                       ransacThreshold=10,
                                       confidence=0.999)
        _, M_univ, _ = cv2.estimateAffine3D(kps3d_w,
                                            kps3d_c_univ,
                                            ransacThreshold=10,
                                            confidence=0.999)

        # returned values correspond to [R,t]^T
        camera_extrinsics[ids] = M
        camera_extrinsics_univ[ids] = M_univ

    return camera_extrinsics_univ, camera_extrinsics
    def fine_reg_cv2(self, num_iter=40):
        trans_mat_set = []
        error_set = []

        for i in xrange(len(self.R_set)):
            # initial pose
            R = self.R_set[i]
            t = self.t_set[i]
            trans_mat = np.concatenate((np.concatenate(
                (R, t), axis=1), np.array([[0, 0, 0, 1]])),
                                       axis=0)
            print 'initial transformation', trans_mat
            src_pts = (trans_mat[:3, 0:3].dot(self.cam_pts.T) +
                       trans_mat[:3, 3:4]).T.astype(np.float32)
            dst_pts = self.all_lidar_pts.astype(np.float32)
            squared_error = 0
            for j in xrange(num_iter):
                (distances, idx) = self.lidar_nn.query(src_pts,
                                                       k=1,
                                                       return_distance=True)
                squared_error = np.square(distances).sum()
                print "iter no. %d squared error %f" % (j, squared_error)
                retval, trans_mat_delta, inliers = cv2.estimateAffine3D(
                    src_pts, dst_pts[idx.T][0], ransacThreshold=0.5)
                #trans_mat_delta = np.concatenate((trans_mat_delta, np.array([[0, 0, 0, 1]])), axis=0)

                idx = idx[np.nonzero(inliers)[0]]
                trans_mat_delta = self.svd_transform(
                    src_pts[np.nonzero(inliers)[0]], dst_pts[idx.T][0])

                print 'number of inliers', inliers.sum()
                # update transformation matrix and src points
                src_pts = (trans_mat_delta[:3, 0:3].dot(src_pts.T) +
                           trans_mat_delta[:3, 3:4]).T
                trans_mat = trans_mat_delta.dot(trans_mat)
            trans_mat_set.append(trans_mat)
            error_set.append(squared_error)

        low_error = float('Inf')
        optimal_mat = trans_mat_set[0]
        for i in xrange(len(trans_mat_set)):
            if low_error > error_set[i]:
                low_error = error_set[i]
                optimal_mat = trans_mat_set[0]

        print optimal_mat
        print low_error
        self.trans_mat_set = trans_mat_set
        self.error_set = error_set
示例#11
0
def CameraToArm_Affine_Transformation(data):
    """Get affine transformation matrix"""
    Arm_Coordinates = data[:, [0, 1, 2]]
    Camera_Coordinates = data[:, [3, 4, 5]]
    retval, affine, inlier = cv.estimateAffine3D(Arm_Coordinates,
                                                 Camera_Coordinates)
    try:
        if retval == 1:
            rotation = affine[:, [0, 1, 2]]
            translation = affine[:, [3]]
            return rotation, translation

    except ValueError:
        print("Calibration Points not correct. Please try again")
        pass
示例#12
0
def ransac_align_points(
        pA,
        pB,
        threshold,
        diagonal_constraint=0.75,
        default=np.eye(4),
):
    """
    """

    # sensible requirement of 50 or more spots to compute ransac affine
    if len(pA) < 50 or len(pB) < 50:
        if default is not None:
            print("Insufficient spot matches for ransac")
            print("Returning default")
            return default
        else:
            message = "Insufficient spot matches for ransac"
            message += ", need 50 or more"
            raise ValueError(message)

    # compute the affine
    r, Aff, inline = cv2.estimateAffine3D(
        pA,
        pB,
        ransacThreshold=threshold,
        confidence=0.999,
    )

    # rarely ransac just doesn't work (depends on data and parameters)
    # sensible choices for hard constraints on the affine matrix
    if np.any(np.diag(Aff) < diagonal_constraint):
        if default is not None:
            print("Degenerate affine produced")
            print("Returning default")
            return default
        else:
            message = "Degenerate affine produced"
            message += ", ransac failed"
            raise ValueError(message)

    # augment affine to 4x4 matrix
    affine = np.eye(4)
    affine[:3, :] = Aff

    return affine
    def __generateTransform(self, fromPts, toPts):
        """
        This will generate a function that will work like this function(x1, y1, z1) and returns (x2, y2, z2), where
        x1, y1, z1 are form the "fromPts" coordinate grid, and the x2, y2, z2 are from the "toPts" coordinate grid.

        It does this by using openCV's estimateAffine3D
        """

        # Generate the transformation matrix
        ret, M, mask = cv2.estimateAffine3D(np.float32(fromPts),
                                            np.float32(toPts),
                                            confidence = .9999999)

        if not ret: printf("RobotVision| ERROR: Transform failed!")

        transformFunc = lambda x: np.array((M * np.vstack((np.matrix(x).reshape(3, 1), 1)))[0:3, :].reshape(1, 3))[0]

        return transformFunc
示例#14
0
def estimate_camera_to_plane(plane, pts, p0, p1):
    """estimate an affine transform from camera to plane
    plane - 4x1 3D plane equation
    pts - Nx3 points on the plane in camera coordinates
    p0 - the new origin in world coordinates
    """

    # TODO: maybe, select this point in a smarter way
    a = (p1 - p0)
    a /= la.norm(a)

    b = np.cross(a, plane[:3])
    b /= la.norm(b)

    # projecting the points to the new basis
    proj_pts = np.inner(pts - p0, [a, b, plane[:3]])

    ret, T, val = cv2.estimateAffine3D(pts, proj_pts, confidence=1.0)
    return np.vstack((T, [0, 0, 0, 1]))
示例#15
0
    def register_point_set(self, point_set_1: np.ndarray,
                        point_set_2: np.ndarray
                        ) -> Tuple[np.ndarray, np.ndarray]:
        """Find optimal affine transformation between the points sets 


                function used: 
                https://docs.opencv.org/4.0.0/d9/d0c/group__calib3d.html#ga396afb6411b30770e56ab69548724715
        Args:
            point_set_1 (np.ndarray): 3xn 
            point_set_2 (np.ndarray): 3xn

        Returns:
            np.ndarray: returns R (3x3 rot matrix), t (3x1 matrix)
        """
        # Input: expects 3xN matrix of points
        # Returns R,t
        # R = 3x3 rotation matrix
        # t = 3x1 column vector

        A = self._check_and_adjust_dimension(point_set_1)
        B = self._check_and_adjust_dimension(point_set_2)
        A = A.T
        logger.debug(f"\n {A}")
        B = B.T
        logger.debug(f"\n {B}")
        retval, out, inlier = cv2.estimateAffine3D(src=A,
                                                   dst=B,
                                                   ransacThreshold=self._threshold,
                                                   confidence=self._confidence,
                                                   )
        logger.debug(f"Number of point correspondances: {A.shape[0]}")
        logger.debug(
            f"Number of inlier: {sum([1 if x == 1 else 0 for x in inlier])}")

        logger.debug(f"""
            Parameters used for ransac:
            Threshold {self._threshold}
            CONFIDENCE {self._confidence}
        """)
        logger.info(f"Result: \n {out}")

        return out[:, :3], out[:, 3]
示例#16
0
def estimate_transformation(width,height,points,image_folder,camera_matrix,roi,ball_radius):
    '''return transformation matrix

    arguments:
       width,height - for images
       points - real points in robot axes
       image_foler - folder with image_{}.png depth_{}.png
       camera_matrix
       roi - rect of interest
       ball_radius - in mm

    note, that z is the vertical axis, so to calibrate we need to 
    '''

    number_images = len(glob.glob(image_folder+'*.png'))//2
    mask = np.zeros((height,width,3))
    mask[roi['y']:roi['y']+roi['height'],roi['x']:roi['x']+roi['width'],:]=1.0

    
    camera_coords = [get_world_coords_n(i, mask, camera_matrix, image_folder) for i in range(number_images)]
    for i in range(number_images):
        d = np.linalg.norm(camera_coords[i])
        camera_coords[i] *= 1.0+ ball_radius/d
    
    sphere_center_in_robot_axes = np.zeros((len(points),3))
    for i in range(len(points)):
        sphere_center_in_robot_axes[i,0] = points[i]["x"]
        sphere_center_in_robot_axes[i,1] = points[i]["y"]
        sphere_center_in_robot_axes[i,2] = points[i]["z"] - ball_radius #robot grabs a ball in the upper point


    camera_coords = np.array(camera_coords).astype(np.float32)
    sphere_center_in_robot_axes = np.array(sphere_center_in_robot_axes).astype(np.float32)
    #compute calibration
    trans = cv2.estimateAffine3D(camera_coords, sphere_center_in_robot_axes)[1]

    return trans
def affine_3D_tx_lip_landmarks_src_to_dst(source_frame_2D_landmarks, source_frame_3D_landmarks,
                                          target_frame_2D_landmarks, target_frame_3D_landmarks):
    # Estimate Affine 3D transformation between the first 36 landmarks (jaw, eyebrows, eyes, nose bridge, nose base) from source to target
    retval, Rt_to_dst_from_src, _ = cv2.estimateAffine3D(source_frame_3D_landmarks[:36], target_frame_3D_landmarks[:36])

    if retval:

        # 3D rotate the 2D lip landmarks (because 2D lip landmarks are more stable than 3D)
        # - Attach the z coordinate of 3D landmarks to 2D landmarks, and add homogeneous coordinate
        source_frame_combo_3D_lip_landmarks = np.hstack(( np.array(source_frame_2D_landmarks)[48:68],
                                                          np.array(source_frame_3D_landmarks)[48:68, 2].reshape(20, 1),
                                                          np.ones((20, 1)) ))
        # - Rotate
        target_lip_landmarks_tx_from_source = np.dot( Rt_to_dst_from_src, source_frame_combo_3D_lip_landmarks.T ).T.astype('int')

        # Normalize, un-normalize to match position of target mouth
        _, target_lip_landmarks_ux, target_lip_landmarks_uy, target_lip_landmarks_w = normalize_lip_landmarks(target_frame_2D_landmarks[48:68])
        new_target_lip_landmarks = np.round(unnormalize_lip_landmarks(normalize_lip_landmarks(target_lip_landmarks_tx_from_source[:, :2])[0],
                                                                      target_lip_landmarks_ux, target_lip_landmarks_uy, target_lip_landmarks_w)).astype(int)
    
    else:
        new_target_lip_landmarks = None
    
    return new_target_lip_landmarks, Rt_to_dst_from_src
示例#18
0
def main():

    # arguments parsing
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--listeners",
        default="127.0.0.1:9001",
        help=
        "The ip:port of the OSC programs listening, different listeners must be separated with ';', if multiple ports are used on one ip, it possible to use this form ip1:port1-1;port1-2;port1-3;ip2:port2-1;port2-2..."
    )
    parser.add_argument(
        "--origin_serial",
        default=None,
        help="The serial number of the tracker used for origin calibration")
    parser.add_argument(
        "--real_world_points",
        default=None,
        help=
        "The JSON file containing list of points to use for origin calibration"
    )
    parser.add_argument(
        "--framerate",
        type=int,
        default=60,
        help=
        "Expected framerate - used to slow down OSC messages if OSC listener can't handle the framerate"
    )
    parser.add_argument(
        "--openvr_coordinates",
        default=False,
        action="store_true",
        help=
        "Use openVR native coordinate system if set, or Unity coordinate system if not set"
    )
    parser.add_argument("--steam",
                        default=False,
                        action="store_true",
                        help="Open SteamVR when the script is launched")
    parser.add_argument(
        "--oscpattern",
        default="/iss/tracker",
        help="The OSC pattern used to send messages, default is '/iss/tracker'"
    )
    parser.add_argument("--bundles",
                        default=False,
                        action="store_true",
                        help="Send single frame messages as a OSC bundle")
    args = parser.parse_args()

    # global program variables
    listeners = []  # array of OSC clients
    origin_serial = args.origin_serial
    real_world_points = []
    real_world_points_array = []
    different_h = False  # to check if all points are at the same height
    current_point_index = -1
    calib_points = []
    calib_mat = np.identity(4)
    # booleans for keystroke interactions
    to_unity_world = True  # can be modified by --openvr_coordinates option or 'u' key
    set_origin = False  # change state with 'o' key
    calib_next_point = False
    escape = False  # change state with 'escape' key
    # filter used to smooth framerate computation for display
    t0_list = []
    t0_list_max_size = args.framerate / 2
    # array of ids of currently tracked trackers (used to identify newly tracked trackers)
    trackers_list = []

    print("======================================")
    print("")
    print("---------------------------------------")
    print("   Coordinate system and calibration   ")
    print("---------------------------------------")
    # if --openvr_coordinates option is used, compute coordinates for openvr coordinate system
    # if not, compute for Unity coordinate system
    to_unity_world = not args.openvr_coordinates
    coordsys = "Unity"
    if not to_unity_world:
        coordsys = "openVR"
    print("Coordinate system is set for {0}".format(coordsys))

    # load last origin matrix from origin_mat.rtm file,
    # the file must be located in the same folder as this script
    origin_file_path = os.path.dirname(
        os.path.abspath(__file__)) + "\origin_mat.rtm"
    #print("try to open origin file at {0}".format(origin_file_path))
    origin_file = Path(origin_file_path)
    if origin_file.exists():
        with open(origin_file_path, 'rb') as loaded_file:
            depickler = pickle.Unpickler(loaded_file)
            calib_mat = depickler.load()
            print("origin loaded from file " + origin_file_path)
            #print(calib_mat)
    else:
        print(
            "origin file not found at " + origin_file_path +
            ", please place the reference and press 'o' key to set a new origin"
        )

    if origin_serial:
        print("Calibration can be done with tracker serial " + origin_serial)
        if args.real_world_points:
            fp = open(args.real_world_points, 'r')
            real_world_points = json.load(fp)
            if len(real_world_points) < 4:
                real_world_points = None
                print("Calibration file must contain at least 4 points")
            else:
                print("Load real world points from JSON file for calibration")
                real_world_points_array = np.zeros((len(real_world_points), 3),
                                                   np.float32)
                different_h = False
                last_h = None
                for i, pt in enumerate(real_world_points):
                    if to_unity_world:
                        real_world_points_array[i][0] = -pt['x']
                        real_world_points_array[i][1] = pt['z']
                        real_world_points_array[i][2] = -pt['y']
                    else:
                        real_world_points_array[i][0] = pt['x']
                        real_world_points_array[i][1] = pt['y']
                        real_world_points_array[i][2] = pt['z']
                    # check if there is at least one point outside of floor plan
                    h = real_world_points_array[i][2]
                    if last_h is None:
                        last_h = h
                    if last_h != h:
                        different_h = True
                    last_h = h

                    print("[{0}] : {1:3.2f}, {2:3.2f}, {3:3.2f}".format(
                        pt['id'], real_world_points_array[i][0],
                        real_world_points_array[i][1],
                        real_world_points_array[i][2]))
                # if all points are at the same height,
                # create a virtual point and append it to the array
                if not different_h:
                    print(
                        "All points are at the same height, creating a virtual point for calibration"
                    )
                    A = real_world_points_array[0]
                    B = real_world_points_array[1]
                    C = real_world_points_array[2]
                    if collinear(A, B, C):
                        print(
                            "ERROR : the 3 first points in real_world_points JSON file must not be aligned"
                        )
                    virtual_point = A + np.cross(np.subtract(B, A),
                                                 np.subtract(C, A))
                    real_world_points_array = np.vstack(
                        [real_world_points_array, virtual_point])
                    print("[{0}] : {1:3.2f}, {2:3.2f}, {3:3.2f}".format(
                        'virtual point', virtual_point[0], virtual_point[1],
                        virtual_point[2]))

    print("")
    print("---------------------------------------")
    print("             OSC parameters            ")
    print("---------------------------------------")
    # parse the ip and ports from listeners and create OSC clients
    listeners_str = args.listeners.split(";")
    overall_ip = "127.0.0.1"
    for l in listeners_str:
        listener = l.split(":")
        port = -1
        if len(listener) == 2:
            overall_ip = listener[0]
            port = int(listener[1])
        elif len(listener) == 1:
            port = int(listener[0])
        ip = overall_ip
        print("Add OSC listener at {0}:{1}".format(ip, port))
        listeners.append(udp_client.SimpleUDPClient(ip, port))

    print("OSC pattern : " + args.oscpattern)

    send_bundles = "Send separate OSC messages for each tracker"
    if args.bundles:
        send_bundles = "Send simultaneous tracker OSC messages as bundles"
    print(send_bundles)

    print("")
    print("---------------------------------------")
    print("                 OpenVR                ")
    print("---------------------------------------")
    # init OpenVR
    # VRApplication_Other will not open SteamVR
    # VRApplication_Scene will open SteamVR
    vrapplication_type = openvr.VRApplication_Other
    if args.steam:
        vrapplication_type = openvr.VRApplication_Scene
        print("open SteamVR")
    print("Initialize OpenVR ... ", end='')
    try:
        openvr.init(vrapplication_type)
    except openvr.OpenVRError as e:
        print("Impossible to intialize OpenVR")
        print(e)
        exit(0)
    vrsystem = openvr.VRSystem()
    print("OK")
    print("======================================")
    print("")

    program_t0 = time.perf_counter()
    while (not escape):

        # keep track of loop time
        loop_t0 = time.perf_counter()
        t0_list.append(loop_t0)
        if len(t0_list) >= t0_list_max_size:
            del t0_list[0]

        # handle keyboard inputs
        key = kbfunc()
        if key != 0:
            if key == ord('o'):
                if origin_serial:
                    # set up origin
                    set_origin = True
                    print("\nset new origin : ")
                    if real_world_points:
                        current_point_index = -1
                        print("Multi-points calibration")
                        calib_next_point = True
                    else:
                        print("Single point calibration")
            elif key == ord('n'):
                calib_next_point = True

            elif key == ord('r'):
                print("\nreset origin")
                calib_mat = np.identity(4)
            elif key == ord('u'):
                to_unity_world = not to_unity_world
                print("\nto unity world = {0}".format(to_unity_world))
            elif key == 27:  # escape
                escape = True
                openvr.shutdown()

        # get all devices currently tracked, it include HMD, controllers, lighthouses and trackers
        poses_t = openvr.TrackedDevicePose_t * openvr.k_unMaxTrackedDeviceCount
        tracked_devices = poses_t()
        tracked_devices = vrsystem.getDeviceToAbsoluteTrackingPose(
            openvr.TrackingUniverseStanding, 0, len(tracked_devices))
        # array to store content that must be sent over OSC
        osc_content = []

        current_loop_trackers_list = []
        for _i, device in enumerate(tracked_devices):
            # broswe the array and keey only correctly tracked trackers
            if device.bPoseIsValid and vrsystem.getTrackedDeviceClass(
                    _i) == openvr.TrackedDeviceClass_GenericTracker:
                tracker_id = vrsystem.getStringTrackedDeviceProperty(
                    _i, openvr.Prop_SerialNumber_String)
                current_loop_trackers_list.append(tracker_id)
                # add tracker_id to list if not already in it
                if tracker_id not in trackers_list:
                    trackers_list.append(tracker_id)
                    print("\nNew tracker found : {}".format(trackers_list[-1]))
                # compute relative position (vector3) and rotation(quaternion) from 3x4 openvr matrix
                m_4x4 = vive_pose_to_numpy_matrix_4x4(
                    device.mDeviceToAbsoluteTracking)
                m_corrected = np.matmul(calib_mat, m_4x4)

                m_rot = np.identity(3)
                for x in range(0, 3):
                    for y in range(0, 3):
                        m_rot[x][y] = m_corrected[x][y]
                quat = quaternion.from_rotation_matrix(m_rot)

                # append computed pos/rot to the list
                content = [
                    tracker_id, m_corrected[0][3], m_corrected[1][3],
                    m_corrected[2][3], quat.x, quat.y, quat.z, quat.w
                ]
                if to_unity_world:
                    # switch and invert coordinates if Unity coordinate system is required
                    content = [
                        tracker_id, -m_corrected[0][3], -m_corrected[2][3],
                        m_corrected[1][3], quat.x, quat.z, -quat.y, quat.w
                    ]
                osc_content.append(content)

                # set new origin if requested
                if vrsystem.getStringTrackedDeviceProperty(
                        _i, openvr.Prop_SerialNumber_String
                ) == origin_serial and set_origin:
                    # perform multi-points calibration
                    if len(real_world_points) >= 4:
                        if calib_next_point:
                            if current_point_index < len(
                                    real_world_points) - 1:
                                print("Place your origin tracker on point")
                                print(real_world_points[current_point_index +
                                                        1])
                                print("and press 'n'")
                            if current_point_index < 0:
                                pass
                            else:
                                openvr_pt = m_4x4[0:3, 3]
                                calib_points.append(openvr_pt)
                            calib_next_point = False
                            current_point_index = current_point_index + 1
                            if current_point_index >= len(real_world_points):
                                print("Computing calibration with {} points".
                                      format(len(real_world_points)))
                                calib_points = np.stack(calib_points)
                                if not different_h:
                                    print(
                                        "All real world points are at same height, creating virtual point"
                                    )
                                    A = calib_points[0]
                                    B = calib_points[1]
                                    C = calib_points[2]
                                    virtual_calib_point = A + np.cross(
                                        np.subtract(B, A), np.subtract(C, A))
                                    calib_points = np.vstack(
                                        [calib_points, virtual_calib_point])

                                retval, M, inliers = cv2.estimateAffine3D(
                                    calib_points, real_world_points_array)
                                calib_mat = np.vstack([M, [0, 0, 0, 1]])
                                with open(origin_file_path,
                                          'wb') as saved_file:
                                    pickler = pickle.Pickler(saved_file)
                                    pickler.dump(calib_mat)
                                print(calib_mat.round(3))
                                set_origin = False

                    # perform single point calibration (e.g, tracker position is origin, rotation matters)
                    else:
                        set_origin = False
                        calib_mat = np.linalg.inv(m_4x4)
                        with open(origin_file_path, 'wb') as saved_file:
                            pickler = pickle.Pickler(saved_file)
                            pickler.dump(calib_mat)
                        print(calib_mat.round(3))
        # remove trackers that are not tracked any more
        for t in trackers_list:
            if t not in current_loop_trackers_list:
                print("\n\tTracker lost : {}".format(t))
                trackers_list.remove(t)

        # send osc content to all listeners if needed
        for l in listeners:
            if args.bundles:
                bundle_builder = osc_bundle_builder.OscBundleBuilder(
                    osc_bundle_builder.IMMEDIATELY)
                for c in osc_content:
                    msg = osc_message_builder.OscMessageBuilder(
                        address=args.oscpattern)
                    for oscarg in c:
                        msg.add_arg(oscarg)
                    bundle_builder.add_content(msg.build())
                l.send(bundle_builder.build())
            else:
                for c in osc_content:
                    l.send_message(args.oscpattern, c)

        #calulate fps
        fps = 0
        if len(t0_list) > 1:
            fps = len(t0_list) / (t0_list[-1] - t0_list[0])
        # update state display
        if (not set_origin):
            print(
                "\rtime : {0:8.1f}, fps : {1:4.1f}, nb trackers : {2}        ".
                format(loop_t0 - program_t0, fps, len(osc_content)),
                end="")

        # ensure fps is respected to avoid OSC messages queue overflow
        while time.perf_counter() - loop_t0 <= 1.0 / args.framerate:
            pass
示例#19
0
# euclidean_matches = euclidean_sift_vec_match(np.arange(0,len(kp1)), orginal_points, keypoints_prime, des1, des2)
# ransac_loop_v2(img1, img2, kp1, kp2, des1, des2)
# ransac_loop_v3(img1, img2, kp1, kp2, euclidean_matches)
bf_matches = mathching_skimage(img1, kp1, des1, img2, kp2, des2, True)

kps1_3d = get_3d_kps(input_voxels[0], kps[0])
kps2_3d = get_3d_kps(input_voxels[1], kps[1])

m_kps1_3d = []
m_kps2_3d = []

for m in bf_matches:
    m_kps1_3d.append(kps1_3d[m[0]])
    m_kps2_3d.append(kps2_3d[m[1]])

retval, out, inliers = cv2.estimateAffine3D(np.array(m_kps2_3d),
                                            np.array(m_kps1_3d))

print(out)

new_3d_pts = [input_voxels[0]]
new_3d_pts.append(get_transformed_points(input_voxels[1], out))

pcds = []
for i in range(len(inputs)):
    voxel_to_csv(input_voxels[i], './cars2/depth/car_{}.csv'.format(i))
    pcd = o3d.geometry.PointCloud()
    pcd.points = o3d.utility.Vector3dVector(input_voxels[i])
    pcds.append(pcd)
    o3d.io.write_point_cloud("./cars2/depth/car_{}.pcd".format(i), pcd)

# o3d.visualization.draw_geometries([pcds[0]])
示例#20
0
cam_points = get_camera_points('/home/sam/Desktop/cam.xml')
log_data = read_log('/home/sam/Downloads/jun29_plane_beaufighter/logs/20100101_080859_UTC_0_beaufighter_revisit_IVER3-3013_Corr.log')

proj = Proj(init='epsg:32633')
proj_longs, proj_lats = proj(log_data['longitude'], log_data['latitude'])
log_points = np.stack([proj_longs, proj_lats, -log_data['dfs_depth']], axis=1)
target_longlat = np.array(proj(14.5031, 35.9243))
longlats = np.stack([proj_longs, proj_lats], axis=1)
dist_from_target = np.linalg.norm(longlats - target_longlat, axis=1)
mask = (log_data['dfs_depth'] > 20) & (dist_from_target < 15)
log_points = log_points[mask]

cam_points = np.random.rand(10, 3)
log_points = np.random.rand(11, 3)

print(cam_points.shape, len(cam_points), cam_points.dtype)
print(log_points.shape, len(log_points), log_points.dtype)

retval, out, inliers = cv2.estimateAffine3D(cam_points, log_points)

print(retval, out, inliers)

# fig = plt.figure()
# ax = fig.gca(projection='3d')
# plt.axis('equal')
# plt.ticklabel_format(useOffset=False)
# # ax.plot(cam_points[:,0], cam_points[:,1], cam_points[:,2], 'bo', markersize=0.5)
# ax.plot(log_points[:,0], log_points[:,1], log_points[:,2], 'go', markersize=0.5)
# ax.plot(result[:,0], result[:,1], result[:,2], 'ro', markersize=0.5)

# plt.show()
示例#21
0
def pose_from_point_cloud(img1, img2):
    left, right = s3d.load_images(img1)
    left2, right2 = s3d.load_images(img2)
    matched_features_1, matched_features_2 = s3d.find_n_best_feature_points(
        left, left2, 300, 40, False)

    features_left_1 = np.array([(f.pt[0], f.pt[1])
                                for f in matched_features_1])
    features_left_2 = np.array([(f.pt[0], f.pt[1])
                                for f in matched_features_2])
    #print(features_left_1, features_left_2)

    disparity_1 = s3d.compute_disparity(left, right, False)
    disparity_2 = s3d.compute_disparity(left2, right2, False)

    points_3d_1, points_3d_2 = matched_points_from_point_cloud(
        disparity_1, features_left_1, disparity_2, features_left_2
    )  # MAKE ONE THAT DOES BOTH IMAGES AT SAME TIME, SINCE LOTS OF THE POINTS DO NOT GET DONE DUES TO DISPARITY FOR SOME REASON, SO THE LEFTOVER ONES ARENT MATCHED
    #print(np.transpose(points_3d_1))
    #formatted_points_1 = formatted_points_2 = []
    #for p in points_3d_1:

    _, transformation, _ = cv2.estimateAffine3D(points_3d_1,
                                                points_3d_2,
                                                ransacThreshold=0.97)
    #RESHAPE POINT ARRAYS
    #print(points_3d_1, points_3d_2)
    #affine3d = trans.affine_matrix_from_points(np.transpose(points_3d_1), np.transpose(points_3d_2), False, False)
    #print(transformation, affine3d)
    transformation = np.append(transformation, [[0.0, 0.0, 0.0, 1.0]], axis=0)
    #print(transformation, affine3d)
    scale, shear, angles, translation, perspective = trans.decompose_matrix(
        transformation)

    r = angles
    t = translation
    """
    h_mat, _ = cv2.findHomography(points_3d_1, points_3d_2, method=cv2.RANSAC) 
    _, r, t, _ = cv2.decomposeHomographyMat(h_mat, camera_matrix)
    print("r, t:", r, t)
    global prev_r, prev_t
    if len(prev_r) > 0 and len(prev_t) > 0:
        best_r = r[0]
        for i in r[1:]:
            #print(i)
            if abs(prev_r[0][0] - i[0][0]) < abs(prev_r[0][0] - best_r[0][0]):
                best_r = i

        best_t = t[0]
        for i in t[1:]:
            if abs(prev_t[0][0] - i[0][0]) < abs(prev_t[0][0] - best_t[0][0]):
                best_t = i

    else:
        best_r = r[0]
        best_t = t[0]
        for i in r:
            if i[0][0] > 0.99:
                best_r = i
        for i in t:
            if i[2] > 0:
                best_t = i
        
    prev_r = best_r
    prev_t = best_t"""

    return r, t
    return x, y, z


# Transform gps coord to ecef coord
ecef_matrix = gps_matrix.copy()
for zz in range(0, gps_matrix.shape[0]):
    x, y, z = gps_to_ecef_pyproj(gps_matrix[zz][0], gps_matrix[zz][1],
                                 gps_matrix[zz][2] - antenna_height)
    ecef_matrix[zz][0] = x
    ecef_matrix[zz][1] = y
    ecef_matrix[zz][2] = z

print("ecef_matrix: ", ecef_matrix)

#Solve 3d affine transformation from chessboard coord to ECEF coord using estimateAffine3D
retval, M, inliers = cv2.estimateAffine3D(world_coord_matrix, ecef_matrix)
if retval:
    print("affine transform from CB to ECEF: ", M)
    dst, Jacobian = cv2.Rodrigues(M[:, 0:3])
    print("rotation: ", np.transpose(dst))
    print("inliers: ", cv2.transpose(inliers))

    # Calculate the Direction Cosine Matrix

    lat = math.radians(gps_matrix[0][0])
    lon = math.radians(gps_matrix[0][1])
    R_From_NED_TO_ECEF = np.zeros((3, 3), np.float32)
    R_From_NED_TO_ECEF[0, 0] = -1 * math.sin(lat) * math.cos(lon)
    R_From_NED_TO_ECEF[1, 0] = -1 * math.sin(lat) * math.sin(lon)
    R_From_NED_TO_ECEF[2, 0] = math.cos(lat)
    R_From_NED_TO_ECEF[0, 1] = -1 * math.sin(lon)
示例#23
0
            for wi in w:
                s = np.insert(s, len(s), float(wi))
            s = np.insert(s, len(s), 1)
            target = np.vstack((target, np.atleast_2d(s)))
    with open(sv) as gi:
        data = gi.readlines()
        for d in data:
            w = d.split()
            s = np.array([], np.float32)
            for wi in w:
                s = np.insert(s, len(s), float(wi))
            source = np.vstack((source, np.atleast_2d(s)))
target = target[1 : target.shape[0], :]
source = source[1 : source.shape[0], :]

retval, M, inliers = cv2.estimateAffine3D(source, target)

for i in range(0, source.shape[0]):
    d = source[i, :]
    d = np.insert(d, len(d), 1)
    #    print np.mat(M)
    #    print np.mat(d)
    #    print '\n'
    m = np.mat(M) * np.mat(d).T
    print m.T
    print target[i, :]
    print "\n"


# print M
示例#24
0
        matchesMask = None

    draw_params = dict(matchColor = (0,255,0), # draw matches in green color
                   singlePointColor = None,
                   matchesMask = matchesMask, # draw only inliers
                   flags = 2)
    img3 = cv2.drawMatches(img1,kp1,img2,kp2,good,None,**draw_params)
    plt.imshow(img3, 'gray'),plt.show()
    

    img1_depth = cv2.imread('car1-depth.png', cv2.IMREAD_GRAYSCALE)
    img2_depth = cv2.imread('car2-depth.png', cv2.IMREAD_GRAYSCALE)
    img1_depth = depth_to_voxel(img1_depth).astype(np.float32)
    img2_depth = depth_to_voxel(img2_depth).astype(np.float32)
    print(len(img1_depth), len(img2_depth))
    retval, out, inliers = cv2.estimateAffine3D(img1_depth, img2_depth)
    print(out)

    # img1 = depth_to_voxel(img1, 50)
    # # voxel_to_csv(img1, r"C:\Users\karlc\Documents\ut\_y4\CSC420\project\3d_reconstruction\00003\points1.csv")
    #
    # img2 = cv2.imread(
    #     r"C:\Users\karlc\Documents\ut\_y4\CSC420\project\3d_reconstruction\00003\depth\0000050-000001635093.png",
    #     cv2.IMREAD_GRAYSCALE)
    # img2 = depth_to_voxel(img2, 50)
    # # voxel_to_csv(img2, r"C:\Users\karlc\Documents\ut\_y4\CSC420\project\3d_reconstruction\00003\points2.csv")
    #
    # img3 = cv2.imread(
    #     r"C:\Users\karlc\Documents\ut\_y4\CSC420\project\3d_reconstruction\00003\depth\0000090-000002969863.png",
    #     cv2.IMREAD_GRAYSCALE)
    # img3 = depth_to_voxel(img3, 50)
#testing
if __name__ == "__main__":
    # DEFINE THESE
    # reference_pts are the checkerboard corners from Primary Stereocamera
    # other_pts are the checkerboard corners from Secondary Stereocamera
    # define theta_guess too
    reference_pts = np.load('pts3D.npy')
    other_pts = np.load('pts3D.npy')
    rot_axis = "Ry"  #for guess

    # calculate the points to use in RANSAC by rotating the input points from Secondary camera using the guessed angle between the cameras
    guessed_pts = R_matrices[rot_axis].dot(other_pts.T).T
    homog_pts = cv2.convertPointsToHomogeneous(guessed_pts).reshape(-1, 4)

    #use affine RANSAC to get correct points
    retval, out_mat, inliers = cv2.estimateAffine3D(guessed_pts, reference_pts)
    np.save("guessed_mat.npy", R_matrices[rot_axis])
    np.save("affine_mat.npy", out_mat)
    affine_pts = out_mat.dot(homog_pts.T).T
    #affine_pts = cv2.convertPointsFromHomogeneous(affine_pts).reshape(-1,3)

    # plot original points in blue and rotated poitns in red, fixed points in yellow
    # (WE WANT RED==YELLOW FOR PERFECT FIT)
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    ax.set_xlabel('X')
    ax.set_ylabel('Y')
    ax.set_zlabel('Z')
    pts_list = [reference_pts, other_pts, guessed_pts, affine_pts]
    i = 0
    for pts in pts_list:
示例#26
0
def cv_transform(pts1, pts2):
    ransac_threshold = 1
    confidence = 0.99
    res, trans, err = cv2.estimateAffine3D(pts1, pts2, ransacThreshold=ransac_threshold, confidence=confidence)
    return trans
示例#27
0
            s = np.array([], np.float32)
            for wi in w:
                s = np.insert(s, len(s), float(wi))
            s = np.insert(s, len(s), 1)
            target = np.vstack((target, np.atleast_2d(s)))
    with open(sv) as gi:
        data = gi.readlines()
        for d in data:
            w = d.split()
            s = np.array([], np.float32)
            for wi in w:
                s = np.insert(s, len(s), float(wi))
            source = np.vstack((source, np.atleast_2d(s)))
target = target[1:target.shape[0], :]
source = source[1:source.shape[0], :]

retval, M, inliers = cv2.estimateAffine3D(source, target)

for i in range(0, source.shape[0]):
    d = source[i, :]
    d = np.insert(d, len(d), 1)
    #    print np.mat(M)
    #    print np.mat(d)
    #    print '\n'
    m = np.mat(M) * np.mat(d).T
    print m.T
    print target[i, :]
    print '\n'

#print M
示例#28
0
Maior[1, 0] = 1
Maior[1, 1] = 0
Maior[1, 2] = 0

Maior[2, 0] = 0
Maior[2, 1] = 1
Maior[2, 2] = 0

Maior[3, 0] = 0
Maior[3, 1] = 0
Maior[3, 2] = 1

xy[0, 0] = 1
xy[0, 1] = 2
xy[0, 2] = 3

xy[1, 0] = 4
xy[1, 1] = 5
xy[1, 2] = 6

xy[2, 0] = 7
xy[2, 1] = 8
xy[2, 2] = 9

xy[3, 0] = 10
xy[3, 1] = 11
xy[3, 2] = 12

retval, out, inliers = cv2.estimateAffine3D(Maior, xy, None, inliers=1)
示例#29
0
def add_image(imagefile, depfile, ddd=True, seg_img=False, seg_dep=False):
    print('Start matching the image in ', imagefile)
    image0 = cv2.imread(imagefile)
    image = cv2.resize(image0, (newWidth, newHeight))
    dep = np.load(depfile)

    images = glob.glob('keys/*.jpg')
    Ms = []
    l = len(images)
    for i in range(max(1, l - 2), l + 1):
        img0 = cv2.imread('keys/' + str(i) + '.jpg')
        img0 = cv2.resize(img0, (newWidth, newHeight))
        pts0, pts, kp1, kp2, matches, matchesMask = sift_points(
            img0, image, 0.75)
        d0 = np.load('keys/deps/0' + str(i) + '.npy')
        #dep, _ = corres_imgs(image,img0,dep,d0)
        print('   matching the image with image ' + str(i))
        print('      -> the translation matrix is :')
        if len(pts) != 0:
            pts0 = verttt(pts0, d0[0, :, :, 0], 1)
            pts = verttt(pts, dep[0, :, :, 0], 1)
            retval, M, inliers = cv2.estimateAffine3D(pts,
                                                      pts0,
                                                      ransacThreshold=12)
            #M = rigid_transform_3D(pts.reshape(-1,3), pts0.reshape(-1,3))
        else:
            M = None

        if M is not None:
            print('      ->   ', M[0])
            print('      ->   ', M[1])
            print('      ->   ', M[2])
            M0 = np.load('keys/Ms/' + str(i) + '.npy')
            Ms.append(mut_trans(M, M0))
        else:
            print('      ->   None')

    if l == 0:
        Ms.append(np.eye(3, 4))
    #M = average_matrix(Ms)
    if seg_img:
        image = mask_img_rgb(image, l + 1)

    if seg_dep:
        dep = np.load(depfile[0:10] + depfile[11:])
    if len(Ms) != 0:
        M = Ms[len(Ms) - 1]
        if ddd:
            res = vert(image, del_all(image, dep[0, :, :, 0]), M, False, False)
        else:
            res = vert(image, dep[0, :, :, 0], M, False, False)
        if seg_dep:
            res = refine_seg_3D(res)
        write_ply('keys/res/' + str(l + 1) + '.ply', res)
        np.save('keys/Ms/' + str(l + 1) + '.npy', M)
        cv2.imwrite('keys/' + str(l + 1) + '.jpg', image0)
        print(' the process of image ' + str(l + 1) + ' is finished.')
    else:
        print(' cannot match image ' + str(l + 1) + '.')
    print(' ')
    return 0
# Need to find more appropriate way to downsample point cloud data / Open3D way
# doesn't work
# Works with translation too
if __name__ == "__main__":
    source = read_point_cloud("../data/heart_scan_processed.txt", format="xyz")
    source.transform([[1,0,0,0],[0,-1,0,0],[0,0,-1,0],[0,0,0,1]])

    test = read_point_cloud("../data/heart_scan_scaled.txt", format="xyz")
    test.transform([[1,0,0,0],[0,-1,0,0],[0,0,-1,0],[0,0,0,1]])
    test.transform([[0,-1,0,100],[1,0,0,100],[0,0,1,100],[0,0,0,1]])

#    voxel_size = 0.005
#    source, target, source_down, target_down, source_fpfh, target_fpfh =
#       prepare_dataset(voxel_size, source, test)
    
    draw_registration_result(source, target, np.identity(4))

    draw_geometries([source])
    draw_geometries([target])

    source_arr = np.asmatrix(source.points)
    target_arr = np.asmatrix(target.points)
    if (len(target_arr) > len(source_arr)):
        target_arr = target_arr[:len(source_arr),:] 
    
    retval, out, inliers = cv2.estimateAffine3D(source_arr, target_arr,
        confidence=0.96)
    out = np.vstack([out, [0.0, 0.0, 0.0, 1.0]])
    print(out)
    draw_registration_result(source, target, out)
示例#31
0
		pnts3d1, placeHolder, placeHolder = get3DPoints(kp1, kp2, des1, des2)
		pnts3d2, placeHolder, placeHolder = get3DPoints(kp1, kp3, des1, des3)
		
		p1 = pnts3d1[:3].T
		p2 = pnts3d2[:3].T
		
		plotReconstruction(p1)
		plotReconstruction(p2)
		
		if len(p1) > len(p2):
			minLength = len(p2)
		else:
			minLength = len(p1)
		
		#print p2
		retval, out, inliers = cv2.estimateAffine3D(p2[:minLength], p1[:minLength])
		print out
		print inliers
		
		out = np.vstack((out, np.array([0,0,0,1])))
		
		
		p2 = p2.T
		p2 = np.vstack((p2, np.ones(len(p2[0]))))
		p2 = np.dot(p2.T, out)
		#pnts3d2 = np.dot(A, pnts3d2)
		
		#p = np.append( p1.T, p2.T, axis = 0 )
		
		'''pointsForImage3 = np.array([[i.pt[0], i.pt[1]] for i in kp3])
		
示例#32
0
def task2():
    # read data
    with open('calibration_data.pp', 'rb') as f:
        data = pickle.load(f, encoding='latin1')

    # find camera exterinsic parameters w.e.t object coordinates
    cameraMatrix = data['leftCameraData']['cameraMatrix']
    objectPoints = [data['objectPoints'].astype(np.float32)] * 10
    left_rvecs, left_tvecs = get_extrinisic_parameters(
        data['objectPoints'], data['leftCameraData']['imagePoints'],
        data['leftCameraData']['cameraMatrix'])
    right_rvecs, right_tvecs = get_extrinisic_parameters(
        data['objectPoints'], data['rightCameraData']['imagePoints'],
        data['rightCameraData']['cameraMatrix'])

    # find object coordinates in camera system
    tot_error = 0
    X_left = np.zeros((len(objectPoints), 4, objectPoints[0].shape[0]),
                      dtype=np.float32)
    X_right = np.zeros((len(objectPoints), 4, objectPoints[0].shape[0]),
                       dtype=np.float32)
    left_imagePoints = [
        d.astype(np.float32).reshape((-1, 1, 2))
        for d in data['leftCameraData']['imagePoints']
    ]
    right_imagePoints = [
        d.astype(np.float32).reshape((-1, 1, 2))
        for d in data['rightCameraData']['imagePoints']
    ]
    for i in range(len(objectPoints)):

        R, _ = cv2.Rodrigues(left_rvecs[i])
        T = np.eye(4)
        T[:3, :3] = R
        T[:3, 3] = left_tvecs[i][:, 0]
        X = np.ones((4, left_imagePoints[i].shape[0]))
        X[:3, :] = objectPoints[0].T
        X_left[i, :, :] = np.matmul(T, X)

        R, _ = cv2.Rodrigues(right_rvecs[i])
        T = np.eye(4)
        T[:3, :3] = R
        T[:3, 3] = right_tvecs[i][:, 0]
        X = np.ones((4, right_imagePoints[i].shape[0]))
        X[:3, :] = objectPoints[0].T
        X_right[i, :, :] = np.matmul(T, X)

        # Xt = np.matmul(T,X)
        # Xt_proj = Xt/Xt[2]
        # U = np.matmul(data['rightCameraData']['cameraMatrix'], Xt_proj)
        # imgpoints2 = U[:2,:].T.reshape((-1,1,2)).astype(np.float32)
        # # imgpoints2, _ = cv2.projectPoints(objectPoints[i], left_rvecs[i], left_tvecs[i], left_cameraMatrix, (0,0,0,0,0))
        # error = cv2.norm(left_imagePoints[i], imgpoints2, cv2.NORM_L2)/len(imgpoints2)
        # plt.subplot(2,5, i +1)
        # plt.plot(left_imagePoints[i][:,0,0],left_imagePoints[i][:,0,1], 'b*'),
        # plt.plot(imgpoints2[:,0,0],imgpoints2[:,0,1], 'r+'),
        # tot_error += error
    print("total error: ", tot_error / len(objectPoints))
    # plt.show()

    #  estiamte Transform matrix using least mean square
    N = X_right.shape[0] * X_right.shape[2]
    # x0 = np.zeros(6).reshape(-1)
    x0 = np.eye(4).reshape(-1)
    lower_bound = np.zeros(16)
    lower_bound[12:15] = -np.finfo(float).eps
    lower_bound[[0, 1, 2, 4, 5, 6, 8, 9, 10]] = -1 - np.finfo(float).eps
    lower_bound[[3, 7, 11]] = -np.inf
    lower_bound[15] = 1 - np.finfo(float).eps
    upper_bound = np.zeros(16)
    upper_bound[12:15] = np.finfo(float).eps
    upper_bound[[0, 1, 2, 4, 5, 6, 8, 9, 10]] = 1 + np.finfo(float).eps
    upper_bound[[3, 7, 11]] = np.inf
    upper_bound[15] = 1 + np.finfo(float).eps
    bounds = (lower_bound, upper_bound)
    diff = X_right - X_left
    cost = np.linalg.norm(diff[:, :3, :]) / np.sqrt(N)
    print("before optimize", cost)
    T_params = least_squares(fun=transform_cost, x0=x0, args=(X_right, X_left))
    y_pred = transform(T_params.x, X_right)
    diff = y_pred - X_left
    cost = np.linalg.norm(diff[:, :3, :]) / np.sqrt(N)
    print("after optimize", cost)
    # T_params = least_squares(fun=transform_cost,x0=T_params.x,args=(X_right, X_left))
    # y_pred = transform(T_params.x, X_right)
    # diff = y_pred - X_left
    # cost = np.linalg.norm(diff)
    # print("after optimize", cost)

    src = np.swapaxes(X_right[:, :3, :], 1, 2).reshape(-1, 3)
    dst = np.swapaxes(X_left[:, :3, :], 1, 2).reshape(-1, 3)
    retval, out, inliers = cv2.estimateAffine3D(src, dst)

    rvec, _ = cv2.Rodrigues(out[:3, :3])

    # x0 = np.zeros(6)
    # x0[:3] = rvec[:,0]
    # x0[3:6] = out[:,3]
    x0 = np.eye(4)
    x0[:3, :] = out
    x0 = x0.reshape(-1)
    y_pred = transform(x0, X_right)
    diff = y_pred - X_left
    cost = np.linalg.norm(diff[:, :3, :]) / np.sqrt(N)
    print("after cv2 estimation", cost)

    rvec = np.array([x0[0], x0[1], x0[2]]).reshape((3, 1))
    R, _ = cv2.Rodrigues(rvec)
    T = np.array([x0[3], x0[4], x0[5]], dtype=np.float32).reshape((3, 1))
    T = np.concatenate((R, T), axis=1).astype(np.float32)
    T = np.vstack((T, np.zeros((1, T.shape[1]), dtype=np.float32)))
    T[3, 3] = 1

    # print(out)
    # print(T)

    T_params = least_squares(fun=transform_cost, x0=x0, args=(X_right, X_left))
    y_pred = transform(T_params.x, X_right)
    diff = y_pred - X_left
    cost = np.linalg.norm(diff[:, :3, :]) / np.sqrt(N)
    print("final optimize", cost)
示例#33
0
    print(markers)

    # markers = np.array([
    #     [176,186,34],
    #     [200,685,43],
    #     [577,684,34],
    #     [485,241,43]
    # ])
    markers_zyx = markers[:, ::-1]

    print(8.9 * edge_lengths(markers))

    im_shape = np.array(active_image.shape)
    vertices = np.array([(0, 0, 1), (im_shape[0], 0, 1),
                         (im_shape[0], im_shape[1], 1), (0, im_shape[1], 1)])
    _, transform, _ = cv2.estimateAffine3D(vertices, markers, False)
    transform = np.vstack((transform, [0, 0, 0, 1])).transpose()
    vertices_aug = np.hstack((vertices, np.array([[1], [1], [1], [1]])))
    rotated = np.dot(vertices_aug, transform)

    CustomIm = scene.visuals.create_visual_node(CustomImageVisual)
    image_visual = CustomIm(active_image,
                            markers,
                            parent=view.scene,
                            cmap='grays')
    image_visual.clim = [active_image.min(), active_image.max()]

    volume_visual = scene.visuals.Volume(volume.swapaxes(0, 2),
                                         parent=view.scene,
                                         threshold=0.225,
                                         emulate_texture=False)
def createTransformFunc(ptPairs, direction):
    """
    Returns a function that takes a point (x,y,z) of a camera coordinate, and returns the robot (x,y,z) for that point
    Direction is either "toRob" or "toCam".
    If "toCam" it will return a Robot-->Camera transform
    If "toRob" it will return a Camera-->Robot transform
    """


    ptPairArray = np.asarray(ptPairs)
    if direction == "toRob":
        pts1 = ptPairArray[:, 0]
        pts2 = ptPairArray[:, 1]

    if direction == "toCam":
        pts1 = ptPairArray[:, 1]
        pts2 = ptPairArray[:, 0]


    # Generate the transformation matrix
    ret, M, mask = cv2.estimateAffine3D(np.float32(pts1),
                                        np.float32(pts2),
                                        confidence = .9999999)

    if not ret: printf("ERROR: Transform failed!")

    # Returns a function that will perform the transformation between pointset 1 and pointset 2 (if direction is == 1)

    transformFunc = lambda x: np.array((M * np.vstack((np.matrix(x).reshape(3, 1), 1)))[0:3, :].reshape(1, 3))[0]


    # # TOCAM test
    # pts1 = ptPairArray[:, 1]
    # pts2 = ptPairArray[:, 0]
    # ret, M, mask = cv2.estimateAffine3D(np.float32(pts1),
    #                                     np.float32(pts2),
    #                                     confidence = .9999999)
    # normalFunc  = lambda x: np.array((M * np.vstack((np.matrix(x).reshape(3, 1), 1)))[0:3, :].reshape(1, 3))[0]
    # print("STARTING\n Normal M, toCam")
    # m2 = np.vstack((M, [0, 0, 0, 1]))
    # print(m2)
    # print("Normal toCam input 15, 30, 45", normalFunc((15, 30, 45)))
    # print("Inverse (toRob)\n", np.linalg.inv(m2))
    #
    #
    #
    # # TOROB test
    # pts1 = ptPairArray[:, 0]
    # pts2 = ptPairArray[:, 1]
    # ret, M, mask = cv2.estimateAffine3D(np.float32(pts1),
    #                                     np.float32(pts2),
    #                                     confidence = .9999999)
    #
    # print("\nNormal M, toRob")
    # m = np.vstack((M, [0, 0, 0, 1]))
    # print(m)
    #
    # # print("Built inverse: ")
    # def inverse(m):
    #     i = np.linalg.inv(m)
    #     #            0          1         2         3
    #     m = [[  i[0][0],    m[][],    m[][], -1/i[3][0]],  # 0
    #          [    m[][],  m[1][1],    m[][],    m[3][1]],  # 1
    #          [    m[][],    i[][],  m[2][2],    m[3][2]],  # 2
    #          [        0,        0,        0,          1]]  # 3
    #
    # print("Inverse (toCam)\n", np.linalg.inv(m))
    # invFunc  = lambda x: np.array((np.linalg.inv(m) * np.vstack((np.matrix(x).reshape(3, 1), 1)))[0:3, :].reshape(1, 3))[0]
    # print("Inverse (toCam) input 15, 30, 45", invFunc((15, 30, 45)))

    """
    Breakdown of function. Here's an example of transforming [95, -35, 530] cam which is [5, 15, 15] in the robot grid

    First:
    [95, -35, 530]

    np.vstack((np.matrix(input).reshape(3, 1), 1))  is applied, converts it to a vertical array
    [[ 95]
     [-35]
     [530]
     [  1]]

    M * np.vstack((np.matrix(x).reshape(3, 1), 1))  (transformation matrix multiplied by the previous number)
    [[  5.8371337 ]
     [ 15.72722685]
     [ 14.5007519 ]]

     There you go. The rest of it is simply converting that matrix into
     [5.83, 15.72, 14.5]

     but you know, without the rounding.

    """

    return transformFunc