示例#1
0
文件: yolo.py 项目: z80020100/cvat
def _export(dst_file, task_data, save_images=False):
    dataset = Dataset.from_extractors(CvatTaskDataExtractor(
        task_data, include_images=save_images),
                                      env=dm_env)
    with TemporaryDirectory() as temp_dir:
        dataset.export(temp_dir, 'yolo', save_images=save_images)

        make_zip_archive(temp_dir, dst_file)
示例#2
0
def _export(dst_file, instance_data, save_images=False):
    dataset = Dataset.from_extractors(GetCVATDataExtractor(
        instance_data, include_images=save_images),
                                      env=dm_env)
    with TemporaryDirectory() as temp_dir:
        dataset.export(temp_dir, 'tf_detection_api', save_images=save_images)

        make_zip_archive(temp_dir, dst_file)
示例#3
0
文件: coco.py 项目: ChrisPHP/cvatron
def _export(dst_file, task_data, save_images=False):
    extractor = CvatTaskDataExtractor(task_data, include_images=save_images)
    extractor = Dataset.from_extractors(extractor)  # apply lazy transforms
    with TemporaryDirectory() as temp_dir:
        dm_env.converters.get('coco_instances').convert(
            extractor, save_dir=temp_dir, save_images=save_images)

        make_zip_archive(temp_dir, dst_file)
示例#4
0
def _export_images(dst_file, task_data, save_images=False):

    dataset = Dataset.from_extractors(GetCVATDataExtractor(
        task_data, include_images=save_images, format_type='sly_pointcloud', dimension=DimensionType.DIM_3D), env=dm_env)

    with TemporaryDirectory() as temp_dir:
        dataset.export(temp_dir, 'sly_pointcloud', save_images=save_images)

        make_zip_archive(temp_dir, dst_file)
示例#5
0
文件: cvat.py 项目: nerdinand/cvat
def _export_task(dst_file, task_data, anno_callback, save_images=False):
    with TemporaryDirectory() as temp_dir:
        with open(osp.join(temp_dir, 'annotations.xml'), 'wb') as f:
            dump_task_anno(f, task_data, anno_callback)

        if save_images:
            dump_media_files(task_data, osp.join(temp_dir, 'images'))

        make_zip_archive(temp_dir, dst_file)
示例#6
0
文件: yolo.py 项目: radoye/cvat
def dump(file_object, annotations):
    from cvat.apps.dataset_manager.bindings import CvatAnnotationsExtractor
    from cvat.apps.dataset_manager.util import make_zip_archive
    from tempfile import TemporaryDirectory
    extractor = CvatAnnotationsExtractor('', annotations)
    converter = CvatYoloConverter()
    with TemporaryDirectory() as temp_dir:
        converter(extractor, save_dir=temp_dir)
        make_zip_archive(temp_dir, file_object)
示例#7
0
def _export(dst_file, task_data, save_images=False):
    extractor = CvatTaskDataExtractor(task_data, include_images=save_images)
    extractor = Dataset.from_extractors(extractor)  # apply lazy transforms
    with TemporaryDirectory() as temp_dir:
        converter = dm_env.make_converter('mot_seq_gt',
                                          save_images=save_images)
        converter(extractor, save_dir=temp_dir)

        make_zip_archive(temp_dir, dst_file)
示例#8
0
文件: icdar.py 项目: z80020100/cvat
def _export_segmentation(dst_file, task_data, save_images=False):
    dataset = Dataset.from_extractors(CvatTaskDataExtractor(
        task_data, include_images=save_images), env=dm_env)
    with TemporaryDirectory() as temp_dir:
        dataset.transform('polygons_to_masks')
        dataset.transform('boxes_to_masks')
        dataset.transform('merge_instance_segments')
        dataset.export(temp_dir, 'icdar_text_segmentation', save_images=save_images)
        make_zip_archive(temp_dir, dst_file)
示例#9
0
def _export(dst_file, instance_data, save_images=False):
    dataset = Dataset.from_extractors(GetCVATDataExtractor(
        instance_data=instance_data, include_images=save_images), env=dm_env)
    if not save_images:
        dataset.transform(DeleteImagePath)
    with TemporaryDirectory() as tmp_dir:
        dataset.export(tmp_dir, 'datumaro', save_images=save_images)

        make_zip_archive(tmp_dir, dst_file)
示例#10
0
文件: icdar.py 项目: anhvth/cvat
def _export_recognition(dst_file, instance_data, save_images=False):
    dataset = Dataset.from_extractors(GetCVATDataExtractor(
        instance_data, include_images=save_images),
                                      env=dm_env)
    dataset.transform(LabelToCaption)
    with TemporaryDirectory() as temp_dir:
        dataset.export(temp_dir,
                       'icdar_word_recognition',
                       save_images=save_images)
        make_zip_archive(temp_dir, dst_file)
示例#11
0
def _export(dst_file, task_data, save_images=False):
    extractor = CvatTaskDataExtractor(task_data, include_images=save_images)
    envt = dm_env.transforms
    extractor = extractor.transform(envt.get('id_from_image_name'))
    extractor = Dataset.from_extractors(extractor)  # apply lazy transforms
    with TemporaryDirectory() as temp_dir:
        converter = dm_env.make_converter('label_me', save_images=save_images)
        converter(extractor, save_dir=temp_dir)

        make_zip_archive(temp_dir, dst_file)
示例#12
0
文件: yolo.py 项目: yohayonyon/cvat
def dump(file_object, annotations):
    from cvat.apps.dataset_manager.bindings import CvatAnnotationsExtractor
    from cvat.apps.dataset_manager.util import make_zip_archive
    from datumaro.components.project import Environment
    from tempfile import TemporaryDirectory
    extractor = CvatAnnotationsExtractor('', annotations)
    converter = Environment().make_converter('yolo')
    with TemporaryDirectory() as temp_dir:
        converter(extractor, save_dir=temp_dir)
        make_zip_archive(temp_dir, file_object)
示例#13
0
def _export(dst_file, instance_data, save_images=False):
    dataset = Dataset.from_extractors(GetCVATDataExtractor(
        instance_data, include_images=save_images),
                                      env=dm_env)
    with TemporaryDirectory() as temp_dir:
        dataset.export(temp_dir,
                       'voc',
                       save_images=save_images,
                       label_map='source')

        make_zip_archive(temp_dir, dst_file)
示例#14
0
文件: mots.py 项目: aschernov/cvat
def _export(dst_file, instance_data, save_images=False):
    dataset = Dataset.from_extractors(GetCVATDataExtractor(
        instance_data, include_images=save_images),
                                      env=dm_env)
    dataset.transform(KeepTracks)  # can only export tracks
    dataset.transform('polygons_to_masks')
    dataset.transform('boxes_to_masks')
    dataset.transform('merge_instance_segments')
    with TemporaryDirectory() as temp_dir:
        dataset.export(temp_dir, 'mots_png', save_images=save_images)

        make_zip_archive(temp_dir, dst_file)
示例#15
0
def _export(dst_file, task_data, save_images=False):
    dataset = Dataset.from_extractors(GetCVATDataExtractor(
        task_data, include_images=save_images),
                                      env=dm_env)
    dataset.transform(RotatedBoxesToPolygons)
    dataset.transform('polygons_to_masks')
    dataset.transform('merge_instance_segments')

    with TemporaryDirectory() as temp_dir:
        dataset.export(temp_dir, 'open_images', save_images=save_images)

        make_zip_archive(temp_dir, dst_file)
示例#16
0
文件: mask.py 项目: quuhua911/cvat
def _export(dst_file, instance_data, save_images=False):
    dataset = Dataset.from_extractors(GetCVATDataExtractor(
        instance_data, include_images=save_images), env=dm_env)
    dataset.transform(RotatedBoxesToPolygons)
    dataset.transform('polygons_to_masks')
    dataset.transform('boxes_to_masks')
    dataset.transform('merge_instance_segments')
    with TemporaryDirectory() as temp_dir:
        dataset.export(temp_dir, 'voc_segmentation', save_images=save_images,
            apply_colormap=True, label_map=make_colormap(instance_data))

        make_zip_archive(temp_dir, dst_file)
示例#17
0
def _export(dst_file, task_data, save_images=False):
    extractor = CvatTaskDataExtractor(task_data, include_images=save_images)
    envt = dm_env.transforms
    extractor = extractor.transform(KeepTracks)  # can only export tracks
    extractor = extractor.transform(envt.get('polygons_to_masks'))
    extractor = extractor.transform(envt.get('boxes_to_masks'))
    extractor = extractor.transform(envt.get('merge_instance_segments'))
    extractor = Dataset.from_extractors(extractor)  # apply lazy transforms
    with TemporaryDirectory() as temp_dir:
        dm_env.converters.get('mots_png').convert(extractor,
                                                  save_dir=temp_dir,
                                                  save_images=save_images)

        make_zip_archive(temp_dir, dst_file)
示例#18
0
def _export(dst_file, task_data, save_images=False):
    extractor = CvatTaskDataExtractor(task_data, include_images=save_images)
    envt = dm_env.transforms
    extractor = extractor.transform(envt.get('polygons_to_masks'))
    extractor = extractor.transform(envt.get('boxes_to_masks'))
    extractor = extractor.transform(envt.get('merge_instance_segments'))
    extractor = Dataset.from_extractors(extractor)  # apply lazy transforms
    with TemporaryDirectory() as temp_dir:
        converter = dm_env.make_converter('voc_segmentation',
                                          apply_colormap=True,
                                          label_map=make_colormap(task_data),
                                          save_images=save_images)
        converter(extractor, save_dir=temp_dir)

        make_zip_archive(temp_dir, dst_file)
示例#19
0
def dump(file_object, annotations):
    from cvat.apps.dataset_manager.bindings import CvatAnnotationsExtractor
    from cvat.apps.dataset_manager.util import make_zip_archive
    from datumaro.components.project import Environment, Dataset
    from tempfile import TemporaryDirectory

    env = Environment()
    id_from_image = env.transforms.get('id_from_image_name')

    extractor = CvatAnnotationsExtractor('', annotations)
    extractor = extractor.transform(id_from_image)
    extractor = Dataset.from_extractors(extractor)  # apply lazy transforms
    converter = env.make_converter('voc', label_map='source')
    with TemporaryDirectory() as temp_dir:
        converter(extractor, save_dir=temp_dir)
        make_zip_archive(temp_dir, file_object)
示例#20
0
def _export_images(dst_file, task_data, save_images=False):

    dataset = Dataset.from_extractors(GetCVATDataExtractor(
        task_data,
        include_images=save_images,
        format_type="kitti_raw",
        dimension=DimensionType.DIM_3D),
                                      env=dm_env)

    with TemporaryDirectory() as temp_dir:
        dataset.export(temp_dir,
                       'kitti_raw',
                       save_images=save_images,
                       reindex=True)

        make_zip_archive(temp_dir, dst_file)
示例#21
0
文件: cvat.py 项目: nerdinand/cvat
def _export_project(dst_file: str,
                    project_data: ProjectData,
                    anno_callback: Callable,
                    save_images: bool = False):
    with TemporaryDirectory() as temp_dir:
        with open(osp.join(temp_dir, 'annotations.xml'), 'wb') as f:
            dump_project_anno(f, project_data, anno_callback)

        if save_images:
            for task_data in project_data.task_data:
                subset = get_defaulted_subset(task_data.db_task.subset,
                                              project_data.subsets)
                subset_dir = osp.join(temp_dir, 'images', subset)
                os.makedirs(subset_dir, exist_ok=True)
                dump_media_files(task_data, subset_dir, project_data)

        make_zip_archive(temp_dir, dst_file)
示例#22
0
def _export(dst_file, task_data, save_images=False):
    extractor = CvatTaskDataExtractor(task_data, include_images=save_images)
    envt = dm_env.transforms
    extractor = extractor.transform(envt.get('polygons_to_masks'))
    extractor = extractor.transform(envt.get('boxes_to_masks'))
    extractor = extractor.transform(envt.get('merge_instance_segments'))
    extractor = Dataset.from_extractors(extractor)  # apply lazy transforms
    label_map = make_colormap(task_data)
    with TemporaryDirectory() as temp_dir:
        dm_env.converters.get('camvid').convert(
            extractor,
            save_dir=temp_dir,
            save_images=save_images,
            apply_colormap=True,
            label_map={label: label_map[label][0]
                       for label in label_map})

        make_zip_archive(temp_dir, dst_file)
示例#23
0
文件: camvid.py 项目: nerdinand/cvat
def _export(dst_file, instance_data, save_images=False):
    dataset = Dataset.from_extractors(GetCVATDataExtractor(
        instance_data, include_images=save_images),
                                      env=dm_env)
    dataset.transform('polygons_to_masks')
    dataset.transform('boxes_to_masks')
    dataset.transform('merge_instance_segments')
    label_map = make_colormap(instance_data)
    with TemporaryDirectory() as temp_dir:
        dataset.export(
            temp_dir,
            'camvid',
            save_images=save_images,
            apply_colormap=True,
            label_map={label: label_map[label][0]
                       for label in label_map})

        make_zip_archive(temp_dir, dst_file)
示例#24
0
def _export(dst_file, instance_data, save_images=False):
    dataset = Dataset.from_extractors(GetCVATDataExtractor(
        instance_data, include_images=save_images),
                                      env=dm_env)

    with TemporaryDirectory() as tmp_dir:
        dataset.transform(RotatedBoxesToPolygons)
        dataset.transform('polygons_to_masks')
        dataset.transform('merge_instance_segments')
        dataset.export(tmp_dir,
                       format='kitti',
                       label_map={
                           k: v[0]
                           for k, v in make_colormap(instance_data).items()
                       },
                       apply_colormap=True,
                       save_images=save_images)

        make_zip_archive(tmp_dir, dst_file)
示例#25
0
def _export(dst_file, task_data, anno_callback, save_images=False):
    with TemporaryDirectory() as temp_dir:
        with open(osp.join(temp_dir, 'annotations.xml'), 'wb') as f:
            anno_callback(f, task_data)

        if save_images:
            img_dir = osp.join(temp_dir, 'images')
            frame_provider = FrameProvider(task_data.db_task.data)
            frames = frame_provider.get_frames(
                frame_provider.Quality.ORIGINAL,
                frame_provider.Type.NUMPY_ARRAY)
            for frame_id, (frame_data, _) in enumerate(frames):
                frame_name = task_data.frame_info[frame_id]['path']
                if '.' in frame_name:
                    save_image(osp.join(img_dir, frame_name),
                        frame_data, jpeg_quality=100, create_dir=True)
                else:
                    save_image(osp.join(img_dir, frame_name + '.png'),
                        frame_data, create_dir=True)

        make_zip_archive(temp_dir, dst_file)
示例#26
0
def _export(dst_file, task_data, anno_callback, save_images=False):
    with TemporaryDirectory() as temp_dir:
        with open(osp.join(temp_dir, 'annotations.xml'), 'wb') as f:
            anno_callback(f, task_data)

        if save_images:
            ext = ''
            if task_data.meta['task']['mode'] == 'interpolation':
                ext = FrameProvider.VIDEO_FRAME_EXT

            img_dir = osp.join(temp_dir, 'images')
            frame_provider = FrameProvider(task_data.db_task.data)
            frames = frame_provider.get_frames(frame_provider.Quality.ORIGINAL,
                                               frame_provider.Type.BUFFER)
            for frame_id, (frame_data, _) in enumerate(frames):
                frame_name = task_data.frame_info[frame_id]['path']
                img_path = osp.join(img_dir, frame_name + ext)
                os.makedirs(osp.dirname(img_path), exist_ok=True)
                with open(img_path, 'wb') as f:
                    f.write(frame_data.getvalue())

        make_zip_archive(temp_dir, dst_file)
示例#27
0
 def __call__(self, dst_file, task_data, save_images=False):
     with TemporaryDirectory() as temp_dir:
         self._export(task_data, save_dir=temp_dir, save_images=save_images)
         make_zip_archive(temp_dir, dst_file)