def forward(self, outputs, targets): """ Performs the matching Params: outputs: This is a dict that contains at least these entries: "pred_logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits "pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates targets: This is a list of targets (len(targets) = batch_size), where each target is a dict containing: "labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of ground-truth objects in the target) containing the class labels "boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates Returns: A list of size batch_size, containing tuples of (index_i, index_j) where: - index_i is the indices of the selected predictions (in order) - index_j is the indices of the corresponding selected targets (in order) For each batch element, it holds: len(index_i) = len(index_j) = min(num_queries, num_target_boxes) """ bs, num_queries = outputs["pred_logits"].shape[:2] # We flatten to compute the cost matrices in a batch out_prob = (outputs["pred_logits"].flatten(0, 1).softmax(-1) ) # [batch_size * num_queries, num_classes] out_bbox = outputs["pred_boxes"].flatten( 0, 1) # [batch_size * num_queries, 4] # Also concat the target labels and boxes tgt_ids = torch.cat([v["labels"] for v in targets]) tgt_bbox = torch.cat([v["boxes"] for v in targets]) # Compute the classification cost. Contrary to the loss, we don't use the NLL, # but approximate it in 1 - proba[target class]. # The 1 is a constant that doesn't change the matching, it can be ommitted. cost_class = -out_prob[:, tgt_ids] # Compute the L1 cost between boxes cost_bbox = torch.cdist(out_bbox, tgt_bbox, p=1) # Compute the giou cost betwen boxes cost_giou = -generalized_box_iou(box_cxcywh_to_xyxy(out_bbox), box_cxcywh_to_xyxy(tgt_bbox)) # Final cost matrix C = self.cost_bbox * cost_bbox + self.cost_class * cost_class + self.cost_giou * cost_giou C = C.view(bs, num_queries, -1).cpu() sizes = [len(v["boxes"]) for v in targets] indices = [ linear_sum_assignment(c[i]) for i, c in enumerate(C.split(sizes, -1)) ] return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices]
def loss_boxes(self, outputs, targets, indices, num_boxes): """ Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4] The target boxes are expected in format (center_x, center_y, h, w), normalized by the image size. """ assert "pred_boxes" in outputs idx = self._get_src_permutation_idx(indices) src_boxes = outputs["pred_boxes"][idx] target_boxes = torch.cat( [t["boxes"][i] for t, (_, i) in zip(targets, indices)], dim=0) loss_bbox = F.l1_loss(src_boxes, target_boxes, reduction="none") losses = {} losses["loss_bbox"] = loss_bbox.sum() / num_boxes loss_giou = 1 - torch.diag( generalized_box_iou(box_ops.box_cxcywh_to_xyxy(src_boxes), box_ops.box_cxcywh_to_xyxy(target_boxes))) losses["loss_giou"] = loss_giou.sum() / num_boxes return losses
def forward(self, outputs, targets): """ Performs the matching Params: outputs: This is a dict that contains at least these entries: "pred_logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits "pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates targets: This is a list of targets (len(targets) = batch_size), where each target is a dict containing: "labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of ground-truth objects in the target) containing the class labels "boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates Returns: A list of size batch_size, containing tuples of (index_i, index_j) where: - index_i is the indices of the selected predictions (in order) - index_j is the indices of the corresponding selected targets (in order) For each batch element, it holds: len(index_i) = len(index_j) = min(num_queries, num_target_boxes) """ bs, num_queries = outputs["pred_logits"].shape[:2] # We flatten to compute the cost matrices in a batch if self.use_focal: out_prob = outputs["pred_logits"].flatten(0, 1).sigmoid() out_bbox = outputs["pred_boxes"].flatten(0, 1) else: out_prob = outputs["pred_logits"].flatten(0, 1).softmax(-1) out_bbox = outputs["pred_boxes"].flatten(0, 1) # Also concat the target labels and boxes tgt_ids = torch.cat([v["labels"] for v in targets]) tgt_bbox = torch.cat([v["boxes_xyxy"] for v in targets]) # Compute the classification cost. Contrary to the loss, we don't use the NLL, # but approximate it in 1 - proba[target class]. # The 1 is a constant that doesn't change the matching, it can be ommitted. if self.use_focal: # Compute the classification cost. alpha = self.focal_loss_alpha gamma = self.focal_loss_gamma neg_cost_class = (1 - alpha) * (out_prob ** gamma) * (-(1 - out_prob + 1e-8).log()) pos_cost_class = alpha * ((1 - out_prob) ** gamma) * (-(out_prob + 1e-8).log()) cost_class = pos_cost_class[:, tgt_ids] - neg_cost_class[:, tgt_ids] else: cost_class = -out_prob[:, tgt_ids] # Compute the L1 cost between boxes image_size_out = torch.cat([v["image_size_xyxy"].unsqueeze(0) for v in targets]) image_size_out = image_size_out.unsqueeze(1).repeat(1, num_queries, 1).flatten(0, 1) image_size_tgt = torch.cat([v["image_size_xyxy_tgt"] for v in targets]) out_bbox_ = out_bbox / image_size_out tgt_bbox_ = tgt_bbox / image_size_tgt cost_bbox = torch.cdist(out_bbox_, tgt_bbox_, p=1) # Compute the giou cost betwen boxes cost_giou = -generalized_box_iou(out_bbox, tgt_bbox) # Final cost matrix C = self.cost_bbox * cost_bbox + self.cost_class * cost_class + self.cost_giou * cost_giou C = C.view(bs, num_queries, -1).cpu() sizes = [len(v["boxes"]) for v in targets] indices = [linear_sum_assignment(c[i]) for i, c in enumerate(C.split(sizes, -1))] return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices]