示例#1
0
def test_ecos_leastsquares():

    x = cvx.Variable (name='x')
    F = cvx.Parameter(name='F')
    g = cvx.Parameter(name='g')

    objective = cvx.square(cvx.norm( F*x - g ))

    objective = cvx.Minimize(objective)
    problem   = cvx.Problem(objective, [])

    canon = Canonicalize(problem, verbose=True)

    # Set values of parameters
    parameters = {
        'F' : 42,
        'g' : 42,
    }

    canon.assign_values(parameters)

    solution = cvx.solve(canon, verbose = True)

    if solution:
        print('Solution obj:', solution['info']['pcost'])
        print('Solution   x:', solution['x'][0])

        assert( np.isclose(solution['x'][0], 1.0) )

    reset_symbols()
示例#2
0
def test_ecos_polyhedradist():
    import cvx_sym as cvx

    n = 2  # number of dimensions
    m = 3  # number of lines defining polyhedron 1
    p = 3  # number of lines defining polyhedron 2

    x1 = cvx.Variable ((n,1),name='x1')
    x2 = cvx.Variable ((n,1),name='x2')

    A1 = cvx.Parameter((m,n),name='A1')
    A2 = cvx.Parameter((p,n),name='A2')
    B1 = cvx.Parameter((m,1),name='B1')
    B2 = cvx.Parameter((p,1),name='B2')

    objective = cvx.square(cvx.norm(x1 - x2))

    constraints  = [ A1[i,:].T * x1 <= B1[i] for i in range(m) ]
    constraints += [ A2[i,:].T * x2 <= B2[i] for i in range(p) ]

    objective = cvx.Minimize(objective)
    problem   = cvx.Problem(objective, constraints)

    canon = Canonicalize(problem, verbose=True)

    # Set values of parameters
    parameters = {
        'A1' : np.array([[-1,1],[1,1],[0,-1]]),
        'B1' : np.array([[3],[3],[0]]),

        'A2' : np.array([[.5,-1],[0,1],[+1,0]]),
        'B2' : np.array([[-3],[3],[5]]),
    }

    canon.assign_values(parameters)

    solution = cvx.solve(canon, verbose = True)

    if solution:
        print('Solution obj:', solution['info']['pcost'])

        # Gather the OG solution variables

        v_indices = [n for n, vn in enumerate(canon.vars.keys()) if 'x' in vn]
        x_solution = [solution['x'][i] for i in v_indices]

        print('Solution   x:', x_solution)
        print('Solution vec:', solution['x'])

        # Solution is found at intersection of polyhedra
        assert( np.allclose(x_solution, [0,3, 0,3],  atol=1e-4) )

        # So therefore the objective should be near zero
        assert( np.allclose(solution['info']['pcost'], 0.0 ) )

    reset_symbols()
示例#3
0
def test_ecos_robustlp():

    import cvx_sym as cvx

    n = 2  # number of dimensions
    m = 3  # number of elementwise elements

    x = cvx.Variable ((n,1),name='x')

    A = cvx.Parameter((m,n),name='A')
    B = cvx.Parameter((m,1),name='B')
    C = cvx.Parameter((n,1),name='C')
    P = cvx.Parameter((m,n),name='P')

    objective = C.T * x

    constraints = [A[i].T * x + cvx.norm(P[i].T * x) <= B[i] for i in range(m)]

    objective = cvx.Minimize(objective)
    problem   = cvx.Problem(objective, constraints)

    canon = Canonicalize(problem, verbose=True)

    # Set values of parameters
    parameters = {
        'A' : np.array([[1,1],[1,1],[1,1]]),
        'B' : np.array([[3],[3],[3]]),

        'C' : np.array([[.1],[.2]]),
        'P' : np.array([[1,2],[3,4],[5,6]])
    }

    canon.assign_values(parameters)

    solution = cvx.solve(canon, verbose = True)

    if solution:
        print('Solution obj:', solution['info']['pcost'])

        # Gather the OG solution variables

        v_indices = [n for n, vn in enumerate(canon.vars.keys()) if 'x' in vn]
        x_solution = [solution['x'][i] for i in v_indices]

        print('Solution   x:', x_solution)
        print('Solution vec:', solution['x'])

        assert( np.allclose(x_solution, [3,-3] ) )

    reset_symbols()
示例#4
0
def test_ecos_chebyshevcenter():

    import cvx_sym as cvx

    n = 2
    m = 3

    r = cvx.Variable((1,1),name='r')
    x = cvx.Variable((n,1),name='x')

    A = cvx.Parameter((m,n),name='A')
    B = cvx.Parameter((m,1),name='B')

    objective = -r

    constraints  = [A[i,:].T * x + r * cvx.norm(A[i,:]) <= B[i] for i in range(m)]
    constraints += [r >= 0]

    objective = cvx.Minimize(objective)
    problem   = cvx.Problem(objective, constraints)

    canon = Canonicalize(problem, verbose=True)

    # Set values of parameters
    parameters = {
        'A' : np.array([[-1,1],[1,1],[0,-1]]),
        'B' : np.array([[3],[3],[0]]),
    }

    canon.assign_values(parameters)

    solution = cvx.solve(canon, verbose = True)

    if solution:
        print('Solution obj:', solution['info']['pcost'])

        # Gather the OG solution variables

        v_indices = [n for n, vn in enumerate(canon.vars.keys()) if 'x' in vn]
        x_solution = [solution['x'][i] for i in v_indices]

        print('Solution   x:', x_solution)
        print('Solution vec:', solution['x'])

        assert( np.allclose(x_solution, [0, 1.242641] ) )

    reset_symbols()
示例#5
0
def test_ecos_leastsquares_constr():

    x = cvx.Variable ((3,1),name='x')
    F = cvx.Parameter((3,3),name='F')
    g = cvx.Parameter((3,1),name='g')

    U = cvx.Parameter((3,1),name='U')
    L = cvx.Parameter((3,1),name='L')

    constraints  = []
    objective = cvx.square(cvx.norm( F*x - g ))

    constraints += [ x <= U ]
    constraints += [ L <= x ]

    objective = cvx.Minimize(objective)
    problem   = cvx.Problem(objective, constraints)

    canon = Canonicalize(problem, verbose=True)

    # Set values of parameters
    parameters = {
        'F' : np.array([[1,2,3],[4,5,6],[7,8,9]]),
        'g' : np.array([[1],[2],[3]]),

        'U' : np.array([[42],[42],[42]]),
        'L' : np.array([[1],[2],[3]])
    }

    canon.assign_values(parameters)

    solution = cvx.solve(canon, verbose = True)

    if solution:
        print('Solution obj:', solution['info']['pcost'])

        # Gather the OG solution variables

        v_indices = [n for n, vn in enumerate(canon.vars.keys()) if 'x' in vn]
        x_solution = [solution['x'][i] for i in v_indices]

        print('Solution   x:', x_solution)
        print('Solution vec:', solution['x'])

        assert( np.allclose(x_solution, [1,2,3] ) )

    reset_symbols()
示例#6
0
def test_ecos_trivial_norm1():

    x = cvx.Variable((3,1),name='x')

    constraints   = [x >= -1]
    constraints  += [x <= +1]

    objective = cvx.norm(x, kind=1)
    objective = cvx.Minimize(objective)
    problem   = cvx.Problem(objective, constraints)

    canon = Canonicalize(problem, verbose=True)
    canon.assign_values({})

    solution = cvx.solve(canon, verbose = True)

    if solution:
        print('Solution obj:', solution['info']['pcost'])
        print('Solution   x:', solution['x'])

        assert( np.allclose(solution['x'][0:3], [0.0, 0.0, 0.0]) )

    reset_symbols()
    def __init__(self):

        K = 50

        self.Xv = cvx.Variable((K, 14), name='Xv')
        self.Uv = cvx.Variable((K, 14), name='Uv')
        self.nuv = cvx.Variable((14 * (K - 1)), name='nuv')
        self.delta = cvx.Variable(K, name='delta')
        self.sigmav = cvx.Variable(name='sigmav')
        self.delta_sv = cvx.Variable(name='delta_sv')

        self.x_init = cvx.Parameter((1, 14), name='x_init')
        self.x_final = cvx.Parameter((1, 14), name='x_final')

        # Indexes to expect config variables on
        m_dry = 0
        tan_gamma_gs = 1
        cos_theta_max = 2
        cos_delta_max = 3
        w_B_max = 4
        T_min = 5
        T_max = 6

        self.config = cvx.Parameter((7), name='config')

        # Parameters:
        self.A_bar_parm = cvx.Parameter((K, 14 * 14), name='A_bar_parm')
        self.B_bar_parm = cvx.Parameter((K, 14 * 3), name='B_bar_parm')
        self.C_bar_parm = cvx.Parameter((K, 14 * 3), name='C_bar_parm')
        self.S_bar_parm = cvx.Parameter((K, 14), name='S_bar_parm')
        self.z_bar_parm = cvx.Parameter((K, 14), name='z_bar_parm')

        self.X_last_parm = cvx.Parameter((K, 14), name='X_last_parm')
        self.U_last_parm = cvx.Parameter((K, 14), name='U_last_parm')
        self.s_last_parm = cvx.Parameter(name='s_last_parm')
        self.w_delta_parm = cvx.Parameter(name='w_delta_parm')
        self.w_nu_parm = cvx.Parameter(name='w_nu_parm')
        self.w_delta_sigma_parm = cvx.Parameter(name='w_delta_sigma_parm')
        """ The start/end indexes of each variable in the vector V = XABCSz """
        self.idx = [14]  # end of x (14,1)
        self.idx += [self.idx[0] + (14 * 14)]  # end of A (14,14)
        self.idx += [self.idx[1] + (14 * 3)]  # end of B (14,3)
        self.idx += [self.idx[2] + (14 * 3)]  # end of C (14,3)
        self.idx += [self.idx[3] + (14 * 1)]  # end of S (14,1)
        self.idx += [self.idx[4] + (14 * 1)]  # end of z (14,1)

        self.constraints = []

        # ----------------------------------------------------- Dynamics:
        for k in range(K - 1):
            self.constraints += [
                self.Xv[k +
                        1, :] == (cvx.reshape(self.A_bar_parm[k, :],
                                              (14, 14)) * self.Xv[k, :] +
                                  cvx.reshape(self.B_bar_parm[k, :],
                                              (14, 3)) * self.Uv[k, 0:3] +
                                  cvx.reshape(self.C_bar_parm[k, :],
                                              (14, 3)) * self.Uv[k + 1, 0:3] +
                                  self.S_bar_parm[k, :] * self.sigmav +
                                  self.z_bar_parm[k, :] +
                                  self.nuv[k * 14:(k + 1) * 14])
            ]

        # ----------------------------------------------------- State constraints:
        self.constraints += [self.Xv[:, 0] >= self.config[m_dry]]

        for k in range(K):
            self.constraints += [
                self.config[tan_gamma_gs] * cvx.norm(self.Xv[k, 2:4]) <=
                self.Xv[k, 1], self.config[cos_theta_max] <=
                1 - 2 * cvx.sum_squares(self.Xv[k, 9:11]),
                cvx.norm(self.Xv[k, 11:14]) <= self.config[w_B_max]
            ]

            # ------------------------------------------------- Control constraints:

            #B_g = self.U_last_parm[k, 0:3] / cvx.norm(self.U_last_parm[k, 0:3])

            self.constraints += [
                #    self.config[T_min] <= B_g * self.Uv[k, 0:3].T,
                self.Uv[k, 0] >= 0,
                cvx.norm(self.Uv[k, 0:3]) <= self.config[T_max],
                self.config[cos_delta_max] * cvx.norm(self.Uv[k, 0:3]) <=
                self.Uv[k, 0]
            ]

            # ------------------------------------------------- Trust regions:

            dx = self.Xv[k, :] - self.X_last_parm[k, :]
            du = self.Uv[k, :] - self.U_last_parm[k, :]

            self.constraints += [
                cvx.sum_squares(dx) + cvx.sum_squares(du) <= self.delta[k]
            ]

        self.constraints += [
            cvx.norm(self.sigmav - self.s_last_parm) <= self.delta_sv
        ]
        self.constraints += [self.sigmav >= 0]

        self.constraints += [
            self.Xv[0, 0:7] == self.x_init[0, 0:7],  # init all but attitude
            self.Xv[0, 11:14] == self.x_init[0, 11:14],
            self.Xv[K - 1, 1:14] == self.x_final[0,
                                                 1:14],  # final all but mass
            self.Uv[K - 1, 1] == 0,
            self.Uv[K - 1, 2] == 0,
        ]

        objective = cvx.Minimize(self.sigmav  # minimize flight time
                                 #-Xv[-1,0]  # minimize fuel use

                                 # virtual control
                                 + self.w_nu_parm * cvx.norm(self.nuv, kind=1)

                                 # trust region on dynamics
                                 + self.w_delta_parm * cvx.norm(self.delta)

                                 # trust region on sigma
                                 + self.w_delta_sigma_parm *
                                 cvx.norm(self.delta_sv, kind=1))

        self.problem = cvx.Problem(objective, self.constraints)

        gen = cvx.Generate(
            self.problem,
            name='Aeroland_core',
            folder='raw',
            verbose=2  # show each stage of the process
        )
示例#8
0
import cvx_sym as cvx
import numpy as np
'''
        Least squares optimization problem
'''

x = cvx.Variable(name='x')
F = cvx.Parameter(name='F')
g = cvx.Parameter(name='g')

constraints = []

objective = cvx.square(cvx.norm(F * x - g))

objective = cvx.Minimize(objective)
problem = cvx.Problem(objective, constraints)
generator = cvx.Generate(problem,
                         name='least_squares_unconstr',
                         folder='integrated_projects',
                         verbose=True)
示例#9
0
def full_scale_ecos_control():

    """ Takes a long time to canonicalize, so don't run as routine test """

    import cvx_sym as cvx

    n = 8
    m = 2
    T = 50

    x = cvx.Variable((n, T+1), name='x')
    u = cvx.Variable((m, T), name='u')

    x_0 = cvx.Parameter((n,1), name='x_0')
    A = cvx.Parameter((n,n), name='A')
    B = cvx.Parameter((n,m), name='B')

    states = []
    constraints  = [ x[:,T] == 0 ]
    constraints += [ x[:,0] == x_0[:,0] ]

    for t in range(T):


        constraints += [ x[:,t+1] == A*x[:,t] + B*u[:,t] ]
        constraints += [ cvx.norm(u[:,t], kind = 'inf') <= 1 ]

        cost = cvx.sum_squares(x[:,t+1]) + cvx.sum_squares(u[:,t])
        states.append( cost )

    # sums problem objectives and concatenates constraints.
    objective = cvx.sum(states)
    objective = cvx.Minimize(objective)
    problem   = cvx.Problem(objective, constraints)

    canon = Canonicalize(problem, verbose = 1 )

    np.random.seed(1)
    alpha = 0.2
    beta = 5

    A_set = np.eye(n) + alpha*np.random.randn(n,n)
    B_set = np.random.randn(n,m)
    x_0_set = beta*np.random.randn(n,1)

    # Set values of parameters
    parameters = {
        'A' : A_set,
        'B' : B_set,
        'x_0' : x_0_set,
    }

    canon.assign_values(parameters)

    solution = cvx.solve(canon, verbose = True)

    if solution:

        obj = solution['info']['pcost']

        # Gather the OG solution variables

        v_indices = [n for n, vn in enumerate(canon.vars.keys()) if 'x' in vn]
        x_solution = [solution['x'][i] for i in v_indices]

        print('Solution obj:', obj)
        print('Solution   x:', x_solution)
        print('Solution vec:', solution['x'])

        assert( np.isclose(obj, 64470.59019495451) )

    reset_symbols()
示例#10
0
import cvx_sym as cvx

n = 2  # number of dimensions
m = 3  # number of lines defining polyhedron 1
p = 3  # number of lines defining polyhedron 2

x1 = cvx.Variable((n, 1), name='x1')
x2 = cvx.Variable((n, 1), name='x2')

A1 = cvx.Parameter((m, n), name='A1')
A2 = cvx.Parameter((p, n), name='A2')
B1 = cvx.Parameter((m, 1), name='B1')
B2 = cvx.Parameter((p, 1), name='B2')

objective = cvx.square(cvx.norm(x1 - x2))

constraints = [A1[i].T * x1 <= B1[i] for i in range(m)]
constraints += [A2[i].T * x2 <= B2[i] for i in range(p)]

objective = cvx.Minimize(objective)
problem = cvx.Problem(objective, constraints)

generator = cvx.Generate(problem,
                         name='polyhedradist',
                         folder='integrated_projects',
                         verbose=1)
示例#11
0
x = cvx.Variable((n, T+1), name='x')
u = cvx.Variable((m, T), name='u')

x_0 = cvx.Parameter((n), name='x_0')
A = cvx.Parameter((n,n), name='A')
B = cvx.Parameter((n,m), name='B')

states = []
constraints  = [ x[:,T] == 0 ]
constraints += [ x[:,0] == x_0[:,0] ]

for t in range(T):


    constraints += [ x[:,t+1] == A*x[:,t] + B*u[:,t] ]
    constraints += [ cvx.norm(u[:,t], kind = 'inf') <= 1 ]

    cost = cvx.sum_squares(x[:,t+1]) + cvx.sum_squares(u[:,t])
    states.append( cost )

# sums problem objectives and concatenates constraints.
objective = cvx.sum(states)
objective = cvx.Minimize(objective)
problem   = cvx.Problem(objective, constraints)

problem = cvx.Problem(objective, constraints)
generator = cvx.Generate(problem,  name = 'control',
                                    folder = 'integrated_projects',
                                    verbose = 1)
示例#12
0
import cvx_sym as cvx

n = 2  # number of dimensions
m = 3  # number of elementwise elements

x = cvx.Variable((n, 1), name='x')

A = cvx.Parameter((m, n), name='A')
B = cvx.Parameter((m, 1), name='B')
C = cvx.Parameter((n, 1), name='C')
P = cvx.Parameter((m, n), name='P')

objective = C.T * x

constraints = [A[i].T * x + cvx.norm(P[i].T * x) <= B[i] for i in range(m)]

objective = cvx.Minimize(objective)
problem = cvx.Problem(objective, constraints)

generator = cvx.Generate(problem,
                         name='robustlp_socp',
                         folder='integrated_projects',
                         verbose=1)
示例#13
0
import cvx_sym as cvx

n = 2
m = 3

r = cvx.Variable((1, 1), name='r')
x = cvx.Variable((n, 1), name='x')

A = cvx.Parameter((m, n), name='A')
B = cvx.Parameter((m, 1), name='B')

objective = -r

constraints = [A[i, :].T * x + r * cvx.norm(A[i, :]) <= B[i] for i in range(m)]
constraints += [r >= 0]

objective = cvx.Minimize(objective)
problem = cvx.Problem(objective, constraints)

generator = cvx.Generate(problem,
                         name='chebyshevcenter',
                         folder='integrated_projects',
                         verbose=1)