def SDPToALocate(self, RN, ToA, ToAStd): """ Apply SDP approximation and localization """ RN = cvxm.matrix(RN) ToA = cvxm.matrix(ToA) c = 3e08 # Speed of light RoA = c*ToA RoAStd = c*ToAStd RoAStd = cvxm.matrix(RoAStd) mtoa,ntoa=cvxm.size(RN) Im = cvxm.eye(mtoa) Y=cvxm.optvar('Y',mtoa+1,mtoa+1) t=cvxm.optvar('t',ntoa,1) prob=cvxm.problem(cvxm.minimize(cvxm.norm2(t))) prob.constr.append(Y>=0) prob.constr.append(Y[mtoa,mtoa]==1) for i in range(ntoa): X0=cvxm.matrix([[Im, -cvxm.transpose(RN[:,i])],[-RN[:,i], cvxm.transpose(RN[:,i])*RN[:,i]]]) prob.constr.append(-t[i]<(cvxm.trace(X0*Y)-RoA[i]**2)*(1/RoAStd[i])) prob.constr.append(t[i]>(cvxm.trace(X0*Y)-RoA[i]**2)*(1/RoAStd[i])) prob.solve() Pval=Y.value X_cvx=Pval[:2,-1] return X_cvx
def SDPRSSLocate(self, RN, PL0, d0, RSS, RSSnp, RSSStd, Rest): RoA=self.getRange(RN, PL0, d0, RSS, RSSnp, RSSStd, Rest) RN=cvxm.matrix(RN) RSS=cvxm.matrix(RSS) RSSnp=cvxm.matrix(RSSnp) RSSStd=cvxm.matrix(RSSStd) PL0=cvxm.matrix(PL0) RoA=cvxm.matrix(RoA) mrss,nrss=cvxm.size(RN) Si = array([(1/d0**2)*10**((RSS[0,0]-PL0[0,0])/(5.0*RSSnp[0,0])),(1/d0**2)*10**((RSS[1,0]-PL0[1,0])/(5.0*RSSnp[1,0])),(1/d0**2)*10**((RSS[2,0]-PL0[2,0])/(5.0*RSSnp[2,0])),(1/d0**2)*10**((RSS[3,0]-PL0[3,0])/(5.0*RSSnp[3,0]))]) #Si = array([(1/d0**2)*10**(-(RSS[0,0]-PL0[0,0])/(5.0*RSSnp[0,0])),(1/d0**2)*10**(-(RSS[0,1]-PL0[1,0])/(5.0*RSSnp[0,1])),(1/d0**2)*10**(-(RSS[0,2]-PL0[2,0])/(5.0*RSSnp[0,2])),(1/d0**2)*10**(-(RSS[0,3]-PL0[3,0])/(5.0*RSSnp[0,3]))]) Im = cvxm.eye(mrss) Y=cvxm.optvar('Y',mrss+1,mrss+1) t=cvxm.optvar('t',nrss,1) prob=cvxm.problem(cvxm.minimize(cvxm.norm2(t))) prob.constr.append(Y>=0) prob.constr.append(Y[mrss,mrss]==1) for i in range(nrss): X0=cvxm.matrix([[Im, -cvxm.transpose(RN[:,i])],[-RN[:,i], cvxm.transpose(RN[:,i])*RN[:,i]]]) prob.constr.append(-RSSStd[i,0]*t[i]<Si[i]*cvxm.trace(X0*Y)-1) prob.constr.append(RSSStd[i,0]*t[i]>Si[i]*cvxm.trace(X0*Y)-1) prob.solve() Pval=Y.value X_cvx=Pval[:2,-1] return X_cvx
def SDPTDoALocate(self, RN1, RN2, TDoA, TDoAStd): """ Apply SDP approximation and localization """ RN1 = cvxm.matrix(RN1) RN2 = cvxm.matrix(RN2) TDoA = cvxm.matrix(TDoA) c = 3e08 RDoA = c*TDoA RDoAStd=cvxm.matrix(c*TDoAStd) mtdoa,ntdoa=cvxm.size(RN1) Im = cvxm.eye(mtdoa) Y=cvxm.optvar('Y',mtdoa+1,mtdoa+1) t=cvxm.optvar('t',ntdoa,1) prob=cvxm.problem(cvxm.minimize(cvxm.norm2(t))) prob.constr.append(Y>=0) prob.constr.append(Y[mtdoa,mtdoa]==1) for i in range(ntdoa): X0=cvxm.matrix([[Im, -cvxm.transpose(RN1[:,i])],[-RN1[:,i], cvxm.transpose(RN1[:,i])*RN1[:,i]]]) X1=cvxm.matrix([[Im, -cvxm.transpose(RN2[:,i])],[-RN2[:,i], cvxm.transpose(RN2[:,i])*RN2[:,i]]]) prob.constr.append(-RDoAStd[i,0]*t[i]<cvxm.trace(X0*Y)+cvxm.trace(X1*Y)-RDoA[i,0]**2) prob.constr.append(RDoAStd[i,0]*t[i]>cvxm.trace(X0*Y)+cvxm.trace(X1*Y)-RDoA[i,0]**2) prob.solve() Pval=Y.value X_cvx=Pval[:2,-1] return X_cvx
def _compute(self): start = datetime.datetime.now() C = self.C gamma = self.gamma Kcount = len( gamma ) (N,d) = self.data.shape X = self.data # CMF of observations X Xcmf = ( (X.reshape(N,1,d) > transpose(X.reshape(N,1,d),[1,0,2])).prod(2).sum(1,dtype=float) / N ).reshape([N,1]) # epsilon of observations X e = sqrt( (1./N) * ( Xcmf ) * (1.-Xcmf) ).reshape([N,1]) K = self._K( Xcmf.reshape(N,1,d), transpose(Xcmf.reshape(N,1,d), [1,0,2]), gamma ) xipos = cvxmod.optvar( 'xi+', N,1) xipos.pos = True xineg = cvxmod.optvar( 'xi-', N,1) xineg.pos = True alphas = list() expr = ( C*cvxmod.sum(xipos) ) + ( C*cvxmod.sum(xineg) ) ineq = 0 eq = 0 for i in range( Kcount ): alpha = cvxmod.optvar( 'alpha(%s)' % i, N,1) alpha.pos = True alphas.append( alpha ) expr += ( float(1./gamma[i]) * cvxmod.sum( alpha ) ) ineq += ( cvxopt.matrix( K[i], (N,N) ) * alpha ) eq += cvxmod.sum( alpha ) objective = cvxmod.minimize( expr ) ineq1 = ineq <= cvxopt.matrix( Xcmf + e ) + xineg ineq2 = ineq >= cvxopt.matrix( Xcmf - e ) - xipos eq1 = eq == cvxopt.matrix( 1.0 ) # Solve! p = cvxmod.problem( objective = objective, constr = [ineq1,ineq2,eq1] ) start = datetime.datetime.now() p.solve() duration = datetime.datetime.now() - start print "optimized in %ss" % (float(duration.microseconds)/1000000) self.Fl = Xcmf self.betas = [ ma.masked_less( alpha.value, 1e-4) for alpha in alphas ] print "SV's found: %s" % [ len( beta.compressed()) for beta in self.betas ]
def solve(cols,W,penalty,par,parvalue): P=len(cols) N=len(cols[0]) norm=eval("norm"+penalty) normFUN=eval("n"+penalty) normQX=0.0 SUMDIFF=0.0 X=matrix([list(x) for x in cols],(N*P,1)) alpha=optvar("alpha",N*P) PARAM=float(parvalue) for i in range(N): for j in range(i+1,N): w=W[i][j] q=matrix(0.0,(1,N)) q[i]=1 q[j]=-1 Qij=getQij(q,P) SUMDIFF+= norm(Qij*alpha)*w xidiff=[cols[k][i]-cols[k][j] for k in range(P)] normQX += normFUN(xidiff)*w from cvxmod.atoms import sum,square ## TDH alternate parameterization ##penalty_norm = 1.0/float(N*(N-1)) ##SUMDIFF *= penalty_norm ##normQX *= penalty_norm ##error=(0.5/N)*sum(square(X-alpha)) error=0.5*sum(square(X-alpha)) problems={ "lambda":(error+PARAM*SUMDIFF,[]), "s":(error,[SUMDIFF*(1/normQX) <= PARAM]), } tomin,constraint=problems[par] p=problem(minimize(tomin),constraint) p.solve() return alpha
def solve(cols, W, penalty, par, parvalue): P = len(cols) N = len(cols[0]) norm = eval("norm" + penalty) normFUN = eval("n" + penalty) normQX = 0.0 SUMDIFF = 0.0 X = matrix([list(x) for x in cols], (N * P, 1)) alpha = optvar("alpha", N * P) PARAM = float(parvalue) for i in range(N): for j in range(i + 1, N): w = W[i][j] q = matrix(0.0, (1, N)) q[i] = 1 q[j] = -1 Qij = getQij(q, P) SUMDIFF += norm(Qij * alpha) * w xidiff = [cols[k][i] - cols[k][j] for k in range(P)] normQX += normFUN(xidiff) * w from cvxmod.atoms import sum, square ## TDH alternate parameterization ##penalty_norm = 1.0/float(N*(N-1)) ##SUMDIFF *= penalty_norm ##normQX *= penalty_norm ##error=(0.5/N)*sum(square(X-alpha)) error = 0.5 * sum(square(X - alpha)) problems = { "lambda": (error + PARAM * SUMDIFF, []), "s": (error, [SUMDIFF * (1 / normQX) <= PARAM]), } tomin, constraint = problems[par] p = problem(minimize(tomin), constraint) p.solve() return alpha
def fit_ellipse_squared(x, y): """ fit ellipoid using squared loss """ assert len(x) == len(y) N = len(x) D = 5 dat = numpy.zeros((N, D)) dat[:,0] = x*x dat[:,1] = y*y #dat[:,2] = x*y dat[:,2] = x dat[:,3] = y dat[:,4] = numpy.ones(N) print dat.shape dat = cvxmod.matrix(dat) #### parameters # data X = cvxmod.param("X", N, D) #### varibales # parameter vector theta = cvxmod.optvar("theta", D) # simple objective objective = cvxmod.atoms.norm2(X*theta) # create problem p = cvxmod.problem(cvxmod.minimize(objective)) p.constr.append(theta[0] + theta[1] == 1) ###### set values X.value = dat #solver = "mosek" #p.solve(lpsolver=solver) p.solve() cvxmod.printval(theta) theta_ = numpy.array(cvxmod.value(theta)) ellipse = conic_to_ellipse(theta_) return ellipse
def _compute(self): C = self.C gamma = self.gamma (N, d) = self.data.shape X = self.data Xcmf = ( (X.reshape(N, 1, d) > transpose(X.reshape(N, 1, d), [1, 0, 2])).prod(2).sum(1, dtype=float) / N ).reshape([N, 1]) sigma = 0.75 / sqrt(N) K = self._K(X.reshape(N, 1, d), transpose(X.reshape(N, 1, d), [1, 0, 2]), gamma).reshape([N, N]) # NOTE: this integral depends on K being the gaussian kernel Kint = (1.0 / gamma) * scipy.special.ndtr((X - X.T) / gamma) alpha = cvxmod.optvar("alpha", N, 1) alpha.pos = True xi = cvxmod.optvar("xi", N, 1) xi.pos = True pXcmf = cvxmod.param("Xcmf", N, 1) pXcmf.pos = True pXcmf.value = cvxopt.matrix(Xcmf, (N, 1)) pKint = cvxmod.param("Kint", N, N) pKint.value = cvxopt.matrix(Kint, (N, N)) objective = cvxmod.minimize(cvxmod.sum(cvxmod.atoms.power(alpha, 2)) + (C * cvxmod.sum(xi))) eq1 = cvxmod.abs((pKint * alpha) - pXcmf) <= sigma + xi eq2 = cvxmod.sum(alpha) == 1.0 # Solve! p = cvxmod.problem(objective=objective, constr=[eq1, eq2]) p.solve() beta = ma.masked_less(alpha.value, 1e-7) mask = ma.getmask(beta) data = ma.array(X, mask=mask) self.beta = beta.compressed().reshape([1, len(beta.compressed())]) self.SV = data.compressed().reshape([len(beta.compressed()), 1]) print "%s SV's found" % len(self.SV)
def compute_bbox_set_agreement(example_boxes, gold_boxes): nExB = len(example_boxes) nGtB = len(gold_boxes) if nExB == 0: if nGtB == 0: return 1 else: return 0 if nGtB == 0: print "WARNING: new object" return 0 A = cvxmod.zeros(rows=nExB, cols=nGtB) for iBox, ex in enumerate(example_boxes): for jBox, gt in enumerate(gold_boxes): A[iBox, jBox] = ex.overlap_score(gt) S = [] S2 = [] for iBox, ex in enumerate(example_boxes): S_tmp = [0] * (iBox) * nGtB + [1] * nGtB + [0] * (nExB - iBox - 1) * nGtB S.append(S_tmp) for jBox in range(0, nGtB): S2_tmp = [0] * nExB * nGtB for j2 in range(0, nExB): S2_tmp[j2 * nGtB + jBox] = 1 S2.append(S2_tmp) S = cvxmod.transpose(cvxmod.matrix(S, size=(nExB * nGtB, nExB))) S2 = cvxmod.transpose(cvxmod.matrix(S2, size=(nExB * nGtB, nGtB))) A2 = cvxmod.matrix(A, (1, nExB * nGtB)) x = cvxmod.optvar('x', rows=nExB * nGtB, cols=1) p = cvxmod.problem(cvxmod.maximize(A2 * x)) p.constr.append(x <= 1) p.constr.append(x >= 0) p.constr.append(S * x <= 1) p.constr.append(S2 * x <= 1) p.solve(True) overlap = cvxmod.value(p) / max(nExB, nGtB) assert (overlap < 1.0001) return overlap
def update(self, dt=None): """ """ self.initialize_LQP() self.get_situation() self.compute_objectives() self.write_tasks() self.write_constraints() self.solve_LQP() M = param('M', value=matrix(self.world.mass)) N = param('N', value=matrix(self.world.nleffects)) # variables: dgvel = optvar('dgvel', self._wndof) tau = optvar('tau', self._wndof) #fc = optvar('tau', self._wndof) gvel = param('gvel', value=matrix(self.world.gvel)) taumax = param('taumax', value=matrix(array([10., 10., 10.]))) ### resolution ### cost = norm2(tau) for task in self._tasks: cost += 100. * task.cost(dgvel) p = problem(minimize(cost)) p.constr.append(M * dgvel + N * gvel == tau) p.constr.append(-taumax <= tau) p.constr.append(tau <= taumax) p.solve(True) tau = array(tau.value).reshape(self._wndof) self._rec_tau.append(tau) gforce = tau impedance = zeros((self._wndof, self._wndof)) return (gforce, impedance)
def update(self, dt=None): """ """ self.initialize_LQP() self.get_situation() self.compute_objectives() self.write_tasks() self.write_constraints() self.solve_LQP() M = param("M", value=matrix(self.world.mass)) N = param("N", value=matrix(self.world.nleffects)) # variables: dgvel = optvar("dgvel", self._wndof) tau = optvar("tau", self._wndof) # fc = optvar('tau', self._wndof) gvel = param("gvel", value=matrix(self.world.gvel)) taumax = param("taumax", value=matrix(array([10.0, 10.0, 10.0]))) ### resolution ### cost = norm2(tau) for task in self._tasks: cost += 100.0 * task.cost(dgvel) p = problem(minimize(cost)) p.constr.append(M * dgvel + N * gvel == tau) p.constr.append(-taumax <= tau) p.constr.append(tau <= taumax) p.solve(True) tau = array(tau.value).reshape(self._wndof) self._rec_tau.append(tau) gforce = tau impedance = zeros((self._wndof, self._wndof)) return (gforce, impedance)
def solve_rw_l1_cvxmod(A, y, iters=6): W = speye(A.size[1]) x = optvar('x', A.size[1]) epsilon = 0.5 for i in range(iters): last_x = matrix(x.value) if x.value else None p = problem(minimize(norm1(W * x)), [A * x == y]) p.solve(quiet=True, cvxoptsolver='glpk') ww = abs(x.value) + epsilon W = diag(matrix([1 / w for w in ww])) if last_x: err = ((last_x - x.value).T * (last_x - x.value))[0] if err < 1e-4: break return x.value
def solve_rw_l1_cvxmod(A, y, iters=6): W = speye(A.size[1]) x = optvar('x', A.size[1]) epsilon = 0.5 for i in range(iters): last_x = matrix(x.value) if x.value else None p = problem(minimize(norm1(W*x)), [A*x == y]) p.solve(quiet=True, cvxoptsolver='glpk') ww = abs(x.value) + epsilon W = diag(matrix([1/w for w in ww])) if last_x: err = ( (last_x - x.value).T * (last_x - x.value) )[0] if err < 1e-4: break return x.value
def interior_point(X, y, lam): """ solve lasso using an interior point method requires cvxmod (Jacob Mattingley and Stephen Boyd) http://cvxmod.net/ """ import cvxmod as cvx n, m = X.shape X_cvx = cvx.matrix(np.array(X)) y_cvx = cvx.matrix(np.array(y)) theta = cvx.optvar('theta', m) p = cvx.problem(cvx.minimize(cvx.sum(cvx.atoms.power(X_cvx*theta - y_cvx, 2)) + (2*lam)*cvx.norm1(theta))) p.solve() return np.array(cvx.value(theta))
def _compute(self): start = datetime.datetime.now() gamma = self.gamma (N,d) = self.data.shape X = self.data Xcmf = ( (X.reshape(N,1,d) > transpose(X.reshape(N,1,d),[1,0,2])).prod(2).sum(1,dtype=float) / N ).reshape([N,1]) sigma = .75 / sqrt(N) K = self._K( X.reshape(N,1,d), transpose(X.reshape(N,1,d), [1,0,2]), gamma ).reshape([N,N]) #NOTE: this integral depends on K being the gaussian kernel Kint = ( (1.0/gamma)*scipy.special.ndtr( (X-X.T)/gamma ) ) alpha = cvxmod.optvar( 'alpha',N,1) alpha.pos = True pK = cvxmod.param( 'K',N,N ) pK.psd = True pK.value = cvxopt.matrix(K,(N,N) ) pKint = cvxmod.param( 'Kint',N,N ) pKint.value = cvxopt.matrix(Kint,(N,N)) #pKint.pos = True pXcmf = cvxmod.param( 'Xcmf',N,1) pXcmf.value = cvxopt.matrix(Xcmf, (N,1)) #pXcmf.pos = True objective = cvxmod.minimize( cvxmod.atoms.quadform(alpha, pK) ) eq1 = cvxmod.abs( pXcmf - ( pKint * alpha ) ) <= sigma eq2 = cvxmod.sum( alpha ) == 1.0 # Solve! p = cvxmod.problem( objective = objective, constr = [eq1, eq2] ) start = datetime.datetime.now() p.solve() duration = datetime.datetime.now() - start print "optimized in %ss" % (float(duration.microseconds)/1000000) beta = ma.masked_less( alpha.value, 1e-7 ) mask = ma.getmask( beta ) data = ma.array(X,mask=mask) self.Fl = Xcmf self.beta = beta.compressed().reshape([ 1, len(beta.compressed()) ]) self.SV = data.compressed().reshape([len(beta.compressed()),1]) print "%s SV's found" % len(self.SV)
def run_opt(feature_lists, reference_indices, alpha): """ run_opt( feature_lists ) -> weights feature_lists is a list of I image_feature_sets image_feature_sets are a list of P stacked_features stacked_features are a list of N different feature types reference_indices is a set of indices which will be held out as "reference" performs the opt: min sum_{i_r in ref_idx} sum_{i < I not in ref_idx} sum_{p < P} w' * ||f_{i_r,p,n} - f_{i,p,n}||^2 - alpha/(P-1) * sum_{p'<p} || f_{i_r,p,n} - f_{i,p',n} ||^2 """ I = len(feature_lists) P = len(feature_lists[0]) N = len(feature_lists[0][0]) non_reference_indices = [i for i in range(I) if not i in reference_indices] closeness_reward = np.zeros(N) uniqueness_penalty = np.zeros(N) f = feature_lists for i_r in reference_indices: for i in non_reference_indices: for p in range(P): for n in range(N): closeness_reward[n] += feature_distance( f[i_r][p][n], f[i][p][n]) for p_false in range(p): uniqueness_penalty[n] += feature_distance( f[i_r][p][n], f[i][p_false][n]) c = cvx.param('c', value=cvx.matrix(closeness_reward - alpha / float(P - 1) * uniqueness_penalty)) print c.value w = cvx.optvar('w', N) w.pos = True w | cvx.In | cvx.norm1ball(N) p = cvx.problem() p.objective = cvx.minimize(cvx.tp(c) * w) p.constr = [cvx.sum(w) == 1] print "Running solver" p.solve() print "Ran!" return np.array(w.value)
def compute_combinaison_safe(self,target,rcond = 0.0,regul = None): """ Computes the combination of base targets allowing to reproduce 'target' (or giving the best approximation), while keeping coefficients between 0 and 1. arguments : - target : target to fit - rcond : cut off on the singular values as a fraction of the biggest one. Only base vectors corresponding to singular values bigger than rcond*largest_singular_value - regul : regularisation factor for least square fitting. This force the algorithm to use fewer targets. """ from cvxmod import optvar,param,norm2,norm1,problem,matrix,minimize if type(target) is str or type(target) is unicode : target = read_target(target) cond = self.s>= rcond*self.s[0] u = self.u[ : , cond ] vt = self.vt[ cond ] s = self.s[cond] t = target.flatten() dim,ntargets = self.vt.shape nvert = target.shape[0] pt = np.dot(u.T,t.reshape(nvert*3,1)) A = param('A',value = matrix(s.reshape(dim,1)*vt)) b = param('b',value = matrix(pt)) x = optvar('x',ntargets) if regul is None : prob = problem(minimize(norm2(A*x-b)),[x>=0.,x<=1.]) else : prob = problem(minimize(norm2(A*x-b) + regul * norm1(x)),[x>=0.,x<=1.]) prob.solve() bs = np.array(x.value).flatten() # Body setting files have a precision of at most 1.e-3 return bs*(bs>=1e-3)
def reconstruct_target(target_file,base_prefix,regul = None): """ Reconstruct the target in 'target_file' using constrained, and optionally regularized, least square optimisation. arguments : target_file : file contaiing the target to fit base_prefix : prefix for the files of the base. """ vlist = read_vertex_list(base_prefix+'_vertices.dat') t = read_target(target_file,vlist) U = load(base_prefix+"_U.npy").astype('float') S = load(base_prefix+"_S.npy").astype('float') V = load(base_prefix+"_V.npy").astype('float') ntargets,dim = V.shape nvert = len(t) pt = dot(U.T,t.reshape(nvert*3,1)) pbase = S[:dim].reshape(dim,1)*V.T A = param('A',value = matrix(pbase)) b = param('b',value = matrix(pt)) x = optvar('x',ntargets) if regul is None : prob = problem(minimize(norm2(A*x-b)),[x>=0.,x<=1.]) else : prob = problem(minimize(norm2(A*x-b) + regul * norm1(x)),[x>=0.,x<=1.]) prob.solve() targ_names_file = base_prefix+"_names.txt" with open(targ_names_file) as f : tnames = [line.strip() for line in f.readlines() ] tnames.sort() base,ext = os.path.splitext(target_file) bs_name = base+".bs" with open(bs_name,"w") as f : for tn,v in zip(tnames,x.value): if v >= 1e-3 : f.write("%s %0.3f\n"%(tn,v))
def run_opt( feature_lists, reference_indices, alpha ): """ run_opt( feature_lists ) -> weights feature_lists is a list of I image_feature_sets image_feature_sets are a list of P stacked_features stacked_features are a list of N different feature types reference_indices is a set of indices which will be held out as "reference" performs the opt: min sum_{i_r in ref_idx} sum_{i < I not in ref_idx} sum_{p < P} w' * ||f_{i_r,p,n} - f_{i,p,n}||^2 - alpha/(P-1) * sum_{p'<p} || f_{i_r,p,n} - f_{i,p',n} ||^2 """ I = len( feature_lists ) P = len( feature_lists[0] ) N = len( feature_lists[0][0] ) non_reference_indices = [i for i in range(I) if not i in reference_indices] closeness_reward = np.zeros( N ) uniqueness_penalty = np.zeros( N ) f = feature_lists for i_r in reference_indices: for i in non_reference_indices: for p in range(P): for n in range(N): closeness_reward[ n ] += feature_distance( f[i_r][p][n], f[i][p][n] ) for p_false in range(p): uniqueness_penalty[ n ] += feature_distance( f[i_r][p][n], f[i][p_false][n] ) c = cvx.param('c', value = cvx.matrix( closeness_reward - alpha / float(P-1) * uniqueness_penalty ) ) print c.value w = cvx.optvar('w', N ) w.pos = True w | cvx.In | cvx.norm1ball(N) p = cvx.problem() p.objective = cvx.minimize( cvx.tp(c) * w ) p.constr = [ cvx.sum(w) == 1] print "Running solver" p.solve() print "Ran!" return np.array( w.value )
def __init__(self, Aeq, beq=None, Aineq=None, bineq=None, lb=None, ub=None, solver=solvers['default']): """ initialize the quadratic problem Keyword arguments: Aeq -- matrix of equality constrains (Aeq * v = beq) beq -- right-hand side vector of equality constraints Aineq -- matrix of inequality constrains (Aineq * v <= bineq) bineq -- right-hand side vector of inequality constraints lb -- list of lower bounds (indexed like matrix columns) ub -- list of upper bounds (indexed like matrix columns) solver -- solver to be used for Quadratic Programming """ LinearProblem.__init__(self, Aeq, beq, Aineq, bineq, lb, ub, solver) self.obj = QuadraticProblem.OoQp() if _cvxmod_avail: self.cvxmodMatrix = cvxmod_matrix(array(Aeq)) self.cvxmodV = optvar('v', self.cvxmodMatrix.size[1], 1) if _cvxpy_avail: self.cvxpyMatrix = array(Aeq) self.cvxpyV = Variable(self.cvxpyMatrix.shape[1], 1, name='v')
def fit(self, data): dat = phi_of_x(data) N = dat.shape[0] D = dat.shape[1] dat = cvxmod.matrix(dat) #### parameters # data X = cvxmod.param("X", N, D) #### varibales # parameter vector theta = cvxmod.optvar("theta", D) # simple objective objective = cvxmod.atoms.norm2(X*theta) # create problem p = cvxmod.problem(cvxmod.minimize(objective)) p.constr.append(theta[0] + theta[1] == 1) ###### set values X.value = dat p.solve() cvxmod.printval(theta) theta_ = numpy.array(cvxmod.value(theta)) #ellipse = conic_to_ellipse(theta_) #return ellipse return theta_
def solve_svm(out, labels, nu, solver): ''' solve boosting formulation used by gelher and nowozin @param out: matrix (N,F) of predictions (for each f_i) for all examples @param labels: vector (N,1) label for each example @param nu: regularization constant @param solver: which solver to use. options: 'mosek', 'glpk' ''' # get dimension N = out.size[0] F = out.size[1] assert N == len(labels), str(N) + " " + str(len(labels)) norm_fact = 1.0 / (nu * float(N)) print "normalization factor %f" % (norm_fact) # avoid point-wise product label_matrix = cvxmod.zeros((N, N)) for i in xrange(N): label_matrix[i, i] = labels[i] #### parameters f = cvxmod.param("f", N, F) y = cvxmod.param("y", N, N, symm=True) norm = cvxmod.param("norm", 1) #### varibales # rho rho = cvxmod.optvar("rho", 1) # dim = (N x 1) chi = cvxmod.optvar("chi", N) # dim = (F x 1) beta = cvxmod.optvar("beta", F) #objective = -rho + cvxmod.sum(chi) * norm_fact + square(norm2(beta)) objective = -rho + cvxmod.sum(chi) * norm_fact print objective # create problem p = cvxmod.problem(cvxmod.minimize(objective)) # create contraints for probability simplex #p.constr.append(beta |cvxmod.In| probsimp(F)) p.constr.append(cvxmod.sum(beta) == 1.0) p.constr.append(beta >= 0.0) p.constr.append(chi >= 0.0) # attempt to perform non-sparse boosting #p.constr.append(square(norm2(beta)) <= 1.0) # y f beta y f*beta y*f*beta # (N x N) (N x F) (F x 1) --> (N x N) (N x 1) --> (N x 1) p.constr.append(y * (f * beta) + chi >= rho) # set values for parameters f.value = out y.value = label_matrix norm.value = norm_fact print "solving problem" print "=============================================" print p print "=============================================" # start solver p.solve(lpsolver=solver) # print variables cvxmod.printval(chi) cvxmod.printval(beta) cvxmod.printval(rho) return numpy.array(cvxmod.value(beta))
def fit_ellipse_stack_squared(dx, dy, dz, di): """ fit ellipoid using squared loss idea to learn all stacks together including smoothness """ # sanity check assert len(dx) == len(dy) assert len(dx) == len(dz) assert len(dx) == len(di) # unique zs dat = defaultdict(list) # resort data for idx in range(len(dx)): dat[dz[idx]].append( [dx[idx], dy[idx], di[idx]] ) # init ret ellipse_stack = [] for idx in range(max(dz)): ellipse_stack.append(Ellipse(0, 0, idx, 1, 1, 0)) total_N = len(dx) M = len(dat.keys()) D = 5 X_matrix = [] thetas = [] for z in dat.keys(): x = numpy.array(dat[z])[:,0] y = numpy.array(dat[z])[:,1] # intensities i = numpy.array(dat[z])[:,2] # log intensities i = numpy.log(i) # create matrix ity = numpy.diag(i) # dimensionality N = len(x) d = numpy.zeros((N, D)) d[:,0] = x*x d[:,1] = y*y #d[:,2] = x*y d[:,2] = x d[:,3] = y d[:,4] = numpy.ones(N) #d[:,0] = x*x #d[:,1] = y*y #d[:,2] = x*y #d[:,3] = x #d[:,4] = y #d[:,5] = numpy.ones(N) # consider intensities old_shape = d.shape d = numpy.dot(ity, d) assert d.shape == old_shape print d.shape d = cvxmod.matrix(d) #### parameters # da X = cvxmod.param("X" + str(z), N, D) X.value = d X_matrix.append(X) #### varibales # parameter vector theta = cvxmod.optvar("theta" + str(z), D) thetas.append(theta) # contruct objective objective = 0 for (i,X) in enumerate(X_matrix): #TODO try abs loss here! objective += cvxmod.sum(cvxmod.atoms.square(X*thetas[i])) #objective += cvxmod.sum(cvxmod.atoms.abs(X*thetas[i])) # add smoothness regularization reg_const = float(total_N) / float(M-1) for i in xrange(M-1): objective += reg_const * cvxmod.sum(cvxmod.atoms.square(thetas[i] - thetas[i+1])) print objective # create problem p = cvxmod.problem(cvxmod.minimize(objective)) # add constraints for i in xrange(M): p.constr.append(thetas[i][0] + thetas[i][1] == 1) ###### set values p.solve() # wrap up result ellipse_stack = {} active_layers = dat.keys() assert len(active_layers) == M for i in xrange(M): theta_ = numpy.array(cvxmod.value(thetas[i])) z_layer = active_layers[i] ellipse_stack[z_layer] = conic_to_ellipse(theta_) ellipse_stack[z_layer].cz = z_layer return ellipse_stack
def fit_ellipse_stack_abs(dx, dy, dz, di): """ fit ellipoid using squared loss idea to learn all stacks together including smoothness """ # sanity check assert len(dx) == len(dy) assert len(dx) == len(dz) assert len(dx) == len(di) # unique zs dat = defaultdict(list) # resort data for idx in range(len(dx)): dat[dz[idx]].append( [dx[idx], dy[idx], di[idx]] ) # init ret ellipse_stack = [] for idx in range(max(dz)): ellipse_stack.append(Ellipse(0, 0, idx, 1, 1, 0)) total_N = len(dx) M = len(dat.keys()) D = 5 X_matrix = [] thetas = [] slacks = [] eps_slacks = [] mean_di = float(numpy.mean(di)) for z in dat.keys(): x = numpy.array(dat[z])[:,0] y = numpy.array(dat[z])[:,1] # intensities i = numpy.array(dat[z])[:,2] # log intensities i = numpy.log(i) # create matrix ity = numpy.diag(i)# / mean_di # dimensionality N = len(x) d = numpy.zeros((N, D)) d[:,0] = x*x d[:,1] = y*y #d[:,2] = x*y d[:,2] = x d[:,3] = y d[:,4] = numpy.ones(N) #d[:,0] = x*x #d[:,1] = y*y #d[:,2] = x*y #d[:,3] = x #d[:,4] = y #d[:,5] = numpy.ones(N) print "old", d # consider intensities old_shape = d.shape d = numpy.dot(ity, d) print "new", d assert d.shape == old_shape print d.shape d = cvxmod.matrix(d) #### parameters # da X = cvxmod.param("X" + str(z), N, D) X.value = d X_matrix.append(X) #### varibales # parameter vector theta = cvxmod.optvar("theta" + str(z), D) thetas.append(theta) # construct obj objective = 0 # loss term for i in xrange(M): objective += cvxmod.atoms.norm1(X_matrix[i] * thetas[i]) # add smoothness regularization reg_const = 5 * float(total_N) / float(M-1) for i in xrange(M-1): objective += reg_const * cvxmod.norm1(thetas[i] - thetas[i+1]) # create problem prob = cvxmod.problem(cvxmod.minimize(objective)) # add constraints """ for (i,X) in enumerate(X_matrix): p.constr.append(X*thetas[i] <= slacks[i]) p.constr.append(-X*thetas[i] <= slacks[i]) #eps = 0.5 #p.constr.append(slacks[i] - eps <= eps_slacks[i]) #p.constr.append(0 <= eps_slacks[i]) """ # add non-degeneracy constraints for i in xrange(1, M-1): prob.constr.append(thetas[i][0] + thetas[i][1] == 1.0) # A + C = 1 # pinch ends prob.constr.append(cvxmod.sum(thetas[0]) >= -0.01) prob.constr.append(cvxmod.sum(thetas[-1]) >= -0.01) print prob ###### set values from cvxopt import solvers solvers.options['reltol'] = 1e-1 solvers.options['abstol'] = 1e-1 print solvers.options prob.solve() # wrap up result ellipse_stack = {} active_layers = dat.keys() assert len(active_layers) == M # reconstruct original parameterization for i in xrange(M): theta_ = numpy.array(cvxmod.value(thetas[i])) z_layer = active_layers[i] ellipse_stack[z_layer] = conic_to_ellipse(theta_) ellipse_stack[z_layer].cz = z_layer return ellipse_stack
def Main(): options, _ = MakeOpts().parse_args(sys.argv) assert options.genes_filename assert options.protein_levels_a and options.protein_levels_b print 'Reading genes list from', options.genes_filename gene_ids = util.ReadProteinIDs(options.genes_filename) print 'Reading protein data A from', options.protein_levels_a gene_counts_a = util.ReadProteinCounts(options.protein_levels_a) print 'Reading protein data B from', options.protein_levels_b gene_counts_b = util.ReadProteinCounts(options.protein_levels_b) my_counts_a = dict( (id, (count, name)) for id, name, count in util.ExtractCounts(gene_counts_a, gene_ids)) my_counts_b = dict( (id, (count, name)) for id, name, count in util.ExtractCounts(gene_counts_b, gene_ids)) overlap_ids = set(my_counts_a.keys()).intersection(my_counts_b.keys()) x = pylab.matrix([my_counts_a[id][0] for id in overlap_ids]) y = pylab.matrix([my_counts_b[id][0] for id in overlap_ids]) labels = [my_counts_b[id][1] for id in overlap_ids] xlog = pylab.log10(x) ylog = pylab.log10(y) a = cvxmod.optvar('a', 1) mx = cvxmod.matrix(xlog.T) my = cvxmod.matrix(ylog.T) p = cvxmod.problem(cvxmod.minimize(cvxmod.norm2(my - a - mx))) p.solve(quiet=True) offset = cvxmod.value(a) lin_factor = 10**offset lin_label = 'Y = %.2g*X' % lin_factor log_label = 'log10(Y) = %.2g + log10(X)' % offset f1 = pylab.figure(0) pylab.title('Linear scale') xylim = max([x.max(), y.max()]) + 5000 linxs = pylab.arange(0.0, xylim, 0.1) linys = linxs * lin_factor pylab.plot(x.tolist()[0], y.tolist()[0], 'g.', label='Protein Data') pylab.plot(linxs, linys, 'b-', label=lin_label) for x_val, y_val, label in zip(x.tolist()[0], y.tolist()[0], labels): pylab.text(x_val, y_val, label, fontsize=8) pylab.xlabel(options.a_label) pylab.ylabel(options.b_label) pylab.legend() pylab.xlim((0.0, xylim)) pylab.ylim((0.0, xylim)) f2 = pylab.figure(1) pylab.title('Log10 scale') xylim = max([xlog.max(), ylog.max()]) + 1.0 pylab.plot(xlog.tolist()[0], ylog.tolist()[0], 'g.', label='Log10 Protein Data') linxs = pylab.arange(0.0, xylim, 0.1) linys = linxs + offset pylab.plot(linxs, linys, 'b-', label=log_label) for x_val, y_val, label in zip(xlog.tolist()[0], ylog.tolist()[0], labels): pylab.text(x_val, y_val, label, fontsize=8) pylab.xlabel(options.a_label + ' (log10)') pylab.ylabel(options.b_label + ' (log10)') pylab.legend() pylab.xlim((0.0, xylim)) pylab.ylim((0.0, xylim)) pylab.show()
def Main(): options, _ = MakeOpts().parse_args(sys.argv) assert options.genes_filename assert options.protein_levels_a and options.protein_levels_b print 'Reading genes list from', options.genes_filename gene_ids = util.ReadProteinIDs(options.genes_filename) print 'Reading protein data A from', options.protein_levels_a gene_counts_a = util.ReadProteinCounts(options.protein_levels_a) print 'Reading protein data B from', options.protein_levels_b gene_counts_b = util.ReadProteinCounts(options.protein_levels_b) my_counts_a = dict((id, (count, name)) for id, name, count in util.ExtractCounts(gene_counts_a, gene_ids)) my_counts_b = dict((id, (count, name)) for id, name, count in util.ExtractCounts(gene_counts_b, gene_ids)) overlap_ids = set(my_counts_a.keys()).intersection(my_counts_b.keys()) x = pylab.matrix([my_counts_a[id][0] for id in overlap_ids]) y = pylab.matrix([my_counts_b[id][0] for id in overlap_ids]) labels = [my_counts_b[id][1] for id in overlap_ids] xlog = pylab.log10(x) ylog = pylab.log10(y) a = cvxmod.optvar('a', 1) mx = cvxmod.matrix(xlog.T) my = cvxmod.matrix(ylog.T) p = cvxmod.problem(cvxmod.minimize(cvxmod.norm2(my - a - mx))) p.solve(quiet=True) offset = cvxmod.value(a) lin_factor = 10**offset lin_label = 'Y = %.2g*X' % lin_factor log_label = 'log10(Y) = %.2g + log10(X)' % offset f1 = pylab.figure(0) pylab.title('Linear scale') xylim = max([x.max(), y.max()]) + 5000 linxs = pylab.arange(0.0, xylim, 0.1) linys = linxs * lin_factor pylab.plot(x.tolist()[0], y.tolist()[0], 'g.', label='Protein Data') pylab.plot(linxs, linys, 'b-', label=lin_label) for x_val, y_val, label in zip(x.tolist()[0], y.tolist()[0], labels): pylab.text(x_val, y_val, label, fontsize=8) pylab.xlabel(options.a_label) pylab.ylabel(options.b_label) pylab.legend() pylab.xlim((0.0, xylim)) pylab.ylim((0.0, xylim)) f2 = pylab.figure(1) pylab.title('Log10 scale') xylim = max([xlog.max(), ylog.max()]) + 1.0 pylab.plot(xlog.tolist()[0], ylog.tolist()[0], 'g.', label='Log10 Protein Data') linxs = pylab.arange(0.0, xylim, 0.1) linys = linxs + offset pylab.plot(linxs, linys, 'b-', label=log_label) for x_val, y_val, label in zip(xlog.tolist()[0], ylog.tolist()[0], labels): pylab.text(x_val, y_val, label, fontsize=8) pylab.xlabel(options.a_label + ' (log10)') pylab.ylabel(options.b_label + ' (log10)') pylab.legend() pylab.xlim((0.0, xylim)) pylab.ylim((0.0, xylim)) pylab.show()
def solve_boosting(out, labels, nu, solver): ''' solve boosting formulation used by gelher and novozin @param out: matrix (N,F) of predictions (for each f_i) for all examples @param y: vector (N,1) label for each example @param p: regularization constant ''' N = out.size[0] F = out.size[1] assert(N==len(labels)) norm_fact = 1.0 / (nu * float(N)) print norm_fact label_matrix = cvxmod.zeros((N,N)) # avoid point-wise product for i in xrange(N): label_matrix[i,i] = labels[i] #### parameters f = cvxmod.param("f", N, F) y = cvxmod.param("y", N, N, symm=True) norm = cvxmod.param("norm", 1) #### varibales # rho rho = cvxmod.optvar("rho", 1) # dim = (N x 1) chi = cvxmod.optvar("chi", N) # dim = (F x 1) beta = cvxmod.optvar("beta", F) #objective = -rho + cvxmod.sum(chi) * norm_fact + square(norm2(beta)) objective = -rho + cvxmod.sum(chi) * norm_fact print objective # create problem p = cvxmod.problem(cvxmod.minimize(objective)) # create contraint for probability simplex #p.constr.append(beta |cvxmod.In| probsimp(F)) p.constr.append(cvxmod.sum(beta)==1.0) #p.constr.append(square(norm2(beta)) <= 1.0) p.constr.append(beta >= 0.0) # y f beta y f*beta y*f*beta # (N x N) (N x F) (F x 1) --> (N x N) (N x 1) --> (N x 1) p.constr.append(y * (f * beta) + chi >= rho) ###### set values f.value = out y.value = label_matrix norm.value = norm_fact p.solve(lpsolver=solver) weights = numpy.array(cvxmod.value(beta)) #print weights cvxmod.printval(chi) cvxmod.printval(beta) cvxmod.printval(rho) return p
def fit_ellipse_eps_insensitive(x, y): """ fit ellipse using epsilon-insensitive loss """ x = numpy.array(x) y = numpy.array(y) print "shapes", x.shape, y.shape assert len(x) == len(y) N = len(x) D = 5 dat = numpy.zeros((N, D)) dat[:,0] = x*x dat[:,1] = y*y #dat[:,2] = y*x dat[:,2] = x dat[:,3] = y dat[:,4] = numpy.ones(N) print dat.shape dat = cvxmod.matrix(dat) #### parameters # data X = cvxmod.param("X", N, D) # parameter for eps-insensitive loss eps = cvxmod.param("eps", 1) #### varibales # parameter vector theta = cvxmod.optvar("theta", D) # dim = (N x 1) s = cvxmod.optvar("s", N) t = cvxmod.optvar("t", N) # simple objective objective = cvxmod.sum(t) # create problem p = cvxmod.problem(cvxmod.minimize(objective)) # add constraints # (N x D) * (D X 1) = (N X 1) p.constr.append(X*theta <= s) p.constr.append(-X*theta <= s) p.constr.append(s - eps <= t) p.constr.append(0 <= t) #p.constr.append(theta[4] == 1) # trace constraint p.constr.append(theta[0] + theta[1] == 1) ###### set values X.value = dat eps.value = 0.0 #solver = "mosek" #p.solve(lpsolver=solver) p.solve() cvxmod.printval(theta) theta_ = numpy.array(cvxmod.value(theta)) ellipse = conic_to_ellipse(theta_) return ellipse
def fit_ellipse_linear(x, y): """ fit ellipse stack using absolute loss """ x = numpy.array(x) y = numpy.array(y) print "shapes", x.shape, y.shape assert len(x) == len(y) N = len(x) D = 6 dat = numpy.zeros((N, D)) dat[:,0] = x*x dat[:,1] = y*y dat[:,2] = y*x dat[:,3] = x dat[:,4] = y dat[:,5] = numpy.ones(N) print dat.shape dat = cvxmod.matrix(dat) # norm norm = numpy.zeros((N,N)) for i in range(N): norm[i,i] = numpy.sqrt(numpy.dot(dat[i], numpy.transpose(dat[i]))) norm = cvxmod.matrix(norm) #### parameters # data X = cvxmod.param("X", N, D) Q_grad = cvxmod.param("Q_grad", N, N) #### varibales # parameter vector theta = cvxmod.optvar("theta", D) # dim = (N x 1) s = cvxmod.optvar("s", N) # simple objective objective = cvxmod.sum(s) # create problem p = cvxmod.problem(cvxmod.minimize(objective)) # add constraints # (N x D) * (D X 1) = (N x N) * (N X 1) p.constr.append(X*theta <= Q_grad*s) p.constr.append(-X*theta <= Q_grad*s) #p.constr.append(theta[4] == 1) # trace constraint p.constr.append(theta[0] + theta[1] == 1) ###### set values X.value = dat Q_grad.value = norm #solver = "mosek" #p.solve(lpsolver=solver) p.solve() cvxmod.printval(theta) theta_ = numpy.array(cvxmod.value(theta)) ellipse = conic_to_ellipse(theta_) return ellipse
def get_energy_per_quanto_state_all(self, baseFileName, convexOpt=False): """This function evaluates the .pwr file and calculates the individual power consumption per state for every node. It then sets the variable statePower on every node to a dictionary, where the keys are the string representation of the state, and the value is the average power consumption for that state. This function expects a very specific .pwr file, where one line starts with "#states:". This line encodes all the states that are considered by quanto. """ for n in self.nodes: f = open("%s.%s.log.pwr"%(baseFileName, n.ip), "r") X = [] Y = [] W = [] totalTime = 0 totalEnergy = 0 states = [] maxEntries = 0 for line in f: l = line.strip().split() if len(l) > 0 and l[0] == "#states:": # this line encodes the names of all the states. states = l[1:] continue if len(states) == 0 or len(l) != len(states)+3: # +2 comes from the icount and time field continue #time is in uS, convert it to seconds time = float(l[-3])/1e6 icount = int(l[-2]) occurences = int(l[-1]) # cut away the time and icount values l = l[0:-3] activeStates = [] for s in l: if s == '-': s = '0' #continue activeStates.append(int(s)) # add the constant power state activeStates.append(1) if len(activeStates) > maxEntries: maxEntries = len(activeStates) if time <= 0 or icount <= 0: # FIXME: this is a wrong line at the end of the quanto files. I # don't know why this happens!!! continue E = n.get_power(icount, time) if E == -1: raise CalibrationError, "Node with IP %s is not calibrated! \ Did you forget to load the calibration file?"%(n.ip,) if E < 0: raise CalibrationError, "Node with IP %s returned a \ negative Energy value %f for icount %d, time %f!"%(n.ip, E, icount, time) continue X.append(activeStates) Y.append(E) W.append(numpy.sqrt(E*time)) totalTime += time totalEnergy += E*time # filter out the incomplete datasets Xnew = [] Ynew = [] Wnew = [] for i in range(len(Y)): if len(X[i]) == maxEntries: Xnew.append(X[i]) Ynew.append(Y[i]) Wnew.append(W[i]) X = numpy.matrix(Xnew) Y = numpy.matrix(Ynew) W = numpy.matrix(numpy.diag(Wnew)) # filter states with all 0's states.append('const') deletedLines = 0 deletedStates = [] alwaysOnStates = [] # iterate through all the states, except the 'const' state for i in range(len(states)-1): correctedI = i - deletedLines if numpy.sum(X.T[correctedI]) == 0: deletedStates.append(states[correctedI]) X = numpy.delete(X, numpy.s_[correctedI:correctedI+1], axis=1) states = numpy.delete(states, correctedI) deletedLines += 1 elif numpy.sum(X.T[correctedI]) == len(X): # this state is always active. W have to remove them and # put them into the "const" category! alwaysOnStates.append(states[correctedI]) X = numpy.delete(X, numpy.s_[correctedI:correctedI+1], axis=1) states = numpy.delete(states, correctedI) deletedLines += 1 # search for linear dependent lines #for i in range(len(X)): # #print X[i] # for j in range(i+1, len(X)): # #if numpy.sum(X[i]) == numpy.sum(X[j]): # # print X[i], X[j] # equal = True # for m in range(X[i].shape[1]): # if X[i,m] != X[j,m]: # equal = False # break # if equal: # print X[i], X[j] # maxEntries includes the const state, which is not in the states # variable yet #states = states[:maxEntries - 1] #xtwx = X.T*X #for i in range(len(xtwx)): # print xtwx[i] #print states #(x, resids, rank, s) = numpy.linalg.lstsq(W*X, W*Y.T) #(x, resids, rank, s) = numpy.linalg.lstsq(X, Y.T) if cvxAvailable and convexOpt: A = cvxmod.matrix(W*X) b = cvxmod.matrix(W*Y.T) x = cvxmod.optvar('x', cvxmod.size(A)[1]) print A print b p = cvxmod.problem(cvxmod.minimize(norm2(A*x - b)), [x >= 0]) #p.constr.append(x |In| probsimp(5)) p.solve() print "Optimal problem value is %.4f." % p.value cvxmod.printval(x) x = x.value else: try: x = numpy.linalg.inv(X.T*W*X)*X.T*W*Y.T except numpy.linalg.LinAlgError, e: sys.stderr.write("State Matrix X for node with IP %s is singular. We did not \ collect enough energy and state information. Please run the application for \ longer!\n"%(n.ip,)) sys.stderr.write(repr(e)) sys.stderr.write("\n") sys.stderr.flush() n.statePower = {} n.alwaysOffStates = [] n.alwaysOnStates = [] continue n.statePower = {} for i in range(len(states)): # the entries in x are matrices. convert them back into a # number n.statePower[states[i]] = float(x[i]) n.alwaysOffStates = deletedStates n.alwaysOnStates = alwaysOnStates n.averagePower = totalEnergy / totalTime
def solve_plain_l1_cvxmod(A, y): x = optvar('x', A.size[1]) p = problem(minimize(norm1(x)), [A*x == y]) p.solve(quiet=True, solver='glpk') return x.value
def solve_plain_l1_cvxmod(A, y): x = optvar('x', A.size[1]) p = problem(minimize(norm1(x)), [A * x == y]) p.solve(quiet=True, solver='glpk') return x.value