示例#1
0
文件: base.py 项目: cvxopt/smcp
    def _gen_mtxnormsdp(self,p,q,r,d,seed):
        """
        Random data generator for matrix norm minimization SDP.
        """
        setseed(seed)
        n = p + q;

        I = matrix([ i for j in range(q) for i in range(q,n)])
        J = matrix([ j for j in range(q) for i in range(q,n)])
        Il = list(misc.sub2ind((n,n),I,J))

        if type(d) is float:
            nz = min(max(1, int(round(d*p*q))), p*q)
            A = sparse([[spmatrix(normal(p*q,1),Il,[0 for i in range(p*q)],(n**2,1))],
                        [spmatrix(normal(nz*r,1),
                                  [i for j in range(r) for i in random.sample(Il,nz)],
                                  [j for j in range(r) for i in range(nz)],(n**2,r))]])
        elif type(d) is list:
            if len(d) == r:
                nz = [min(max(1, int(round(v*p*q))), p*q) for v in d]
                nnz = sum(nz)
                A = sparse([[spmatrix(normal(p*q,1),Il,[0 for i in range(p*q)],(n**2,1))],
                            [spmatrix(normal(nnz,1),
                                      [i for j in range(r) for i in random.sample(Il,nz[j])],
                                      [j for j in range(r) for i in range(nz[j])],(n**2,r))]])
        else: raise TypeError
        self._A = sparse([[A],[spmatrix(-1.,list(range(0,n**2,n+1)),[0 for i in range(n)],(n**2,1))]])

        self._b = matrix(0.,(r+1,1))
        self._b[-1] = -1.
示例#2
0
文件: base.py 项目: cvxopt/smcp
    def _gen_bandsdp(self,n,m,bw,seed):
        """Random data generator for SDP with band structure"""
        setseed(seed)

        I = matrix([ i for j in range(n) for i in range(j,min(j+bw+1,n))])
        J = matrix([ j for j in range(n) for i in range(j,min(j+bw+1,n))])
        V = spmatrix(0.,I,J,(n,n))
        Il = misc.sub2ind((n,n),I,J)
        Id = matrix([i for i in range(len(Il)) if I[i]==J[i]])

        # generate random y with norm 1
        y0 = normal(m,1)
        y0 /= blas.nrm2(y0)

        # generate random S0
        S0 = mk_rand(V,cone='posdef',seed=seed)
        X0 = mk_rand(V,cone='completable',seed=seed)

        # generate random A1,...,Am and set A0 = sum Ai*yi + S0
        A_ = normal(len(I),m+1,std=1./len(I))
        u = +S0.V
        blas.gemv(A_[:,1:],y0,u,beta=1.0)
        A_[:,0] = u
        # compute b
        x = +X0.V
        x[Id] *= 0.5
        self._b = matrix(0.,(m,1))
        blas.gemv(A_[:,1:],x,self._b,trans='T',alpha=2.0)
        # form A
        self._A = spmatrix(A_[:],
                     [i for j in range(m+1) for i in Il],
                     [j for j in range(m+1) for i in Il],(n**2,m+1))

        self._X0 = X0; self._y0 = y0; self._S0 = S0
示例#3
0
def robustLS_toep(q, r, delta=None, seed=0):
    """
    Random data generator for matrix norm minimization SDP.
    
    Al,b = robustLS_toep(q,r,delta=0.1,seed=0])
    
    PURPOSE
    Generates random data for a robust least squares problem
    with Toeplitz structure:
     
      minimize e_wc(x)^2
    
    where
    
      e_wc(x)=sup_{norm(u)<=1} norm((Ab+A1*u1+...+Ar*ur)*x - b),
    
      Ab,A1,...,Ar \in \reals^{p \times q}        
    
    The parameter r determines the number of nonzero diagonals
    in Ab (1 <= r <= p).

    ARGUMENTS   
    q         integer
    
    r         integer

    delta     float
    
    RETURNS
    Al        list of CVXOPT matrices, [Ab,A1,...,Ar]

    b         CVXOPT matrix

    """
    setseed(seed)

    p = q + r - 1
    Alist = [
        sparse(
            misc.toeplitz(
                matrix([normal(r, 1), matrix(0., (p - r, 1))], (p, 1)),
                matrix(0., (q, 1))))
    ]
    x = normal(q, 1)
    b = normal(p, 1, std=0.1)
    b += Alist[0] * x

    if delta is None:
        delta = 1. / r

    for i in xrange(r):
        Alist.append(
            spmatrix(delta, xrange(i, min(p, q + i)), xrange(min(q, p - i)),
                     (p, q)))

    return robustLS_SDP(Alist, b)
示例#4
0
文件: base.py 项目: cvxopt/smcp
    def _gen_randsdp(self,V,m,d,seed):
        """
        Random data generator
        """
        setseed(seed)
        n = self._n
        V = chompack.tril(V)
        N = len(V)
        I = V.I; J = V.J
        Il = misc.sub2ind((n,n),I,J)
        Id = matrix([i for i in range(len(Il)) if I[i]==J[i]])

        # generate random y with norm 1
        y0 = normal(m,1)
        y0 /= blas.nrm2(y0)

        # generate random S0, X0
        S0 = mk_rand(V,cone='posdef',seed=seed)
        X0 = mk_rand(V,cone='completable',seed=seed)

        # generate random A1,...,Am
        if type(d) is float:
            nz = min(max(1, int(round(d*N))), N)
            A = sparse([[spmatrix(normal(N,1),Il,[0 for i in range(N)],(n**2,1))],
                        [spmatrix(normal(nz*m,1),
                                  [i for j in range(m) for i in random.sample(Il,nz)],
                                  [j for j in range(m) for i in range(nz)],(n**2,m))]])
        elif type(d) is list:
            if len(d) == m:
                nz = [min(max(1, int(round(v*N))), N) for v in d]
                nnz = sum(nz)
                A = sparse([[spmatrix(normal(N,1),Il,[0 for i in range(N)],(n**2,1))],
                            [spmatrix(normal(nnz,1),
                                      [i for j in range(m) for i in random.sample(Il,nz[j])],
                                      [j for j in range(m) for i in range(nz[j])],(n**2,m))]])
        else: raise TypeError

        # compute A0
        u = +S0.V
        for k in range(m):
            base.gemv(A[:,k+1][Il],matrix(y0[k]),u,beta=1.0,trans='N')
        A[Il,0] = u
        self._A = A

        # compute b
        X0[Il[Id]] *= 0.5
        self._b = matrix(0.,(m,1))
        u = matrix(0.)
        for k in range(m):
            base.gemv(A[:,k+1][Il],X0.V,u,trans='T',alpha=2.0)
            self._b[k] = u
示例#5
0
文件: base.py 项目: cvxopt/smcp
def robustLS_toep(q,r,delta=None,seed=0):
    """
    Random data generator for matrix norm minimization SDP.

    Al,b = robustLS_toep(q,r,delta=0.1,seed=0])

    PURPOSE
    Generates random data for a robust least squares problem
    with Toeplitz structure:

      minimize e_wc(x)^2

    where

      e_wc(x)=sup_{norm(u)<=1} norm((Ab+A1*u1+...+Ar*ur)*x - b),

      Ab,A1,...,Ar \in \reals^{p \times q}

    The parameter r determines the number of nonzero diagonals
    in Ab (1 <= r <= p).

    ARGUMENTS
    q         integer

    r         integer

    delta     float

    RETURNS
    Al        list of CVXOPT matrices, [Ab,A1,...,Ar]

    b         CVXOPT matrix

    """
    setseed(seed)

    p = q+r-1
    Alist = [sparse(misc.toeplitz(matrix([normal(r,1),matrix(0.,(p-r,1))],(p,1)),matrix(0.,(q,1))))]
    x = normal(q,1)
    b = normal(p,1,std=0.1)
    b += Alist[0]*x

    if delta is None:
        delta = 1./r

    for i in range(r):
        Alist.append(spmatrix(delta,range(i,min(p,q+i)),range(min(q,p-i)),(p,q)))

    return robustLS_SDP(Alist, b)
示例#6
0
    def _gen_mtxnormsdp(self, p, q, r, d, seed):
        """
        Random data generator for matrix norm minimization SDP.
        """
        setseed(seed)
        n = p + q

        I = matrix([i for j in range(q) for i in range(q, n)])
        J = matrix([j for j in range(q) for i in range(q, n)])
        Il = misc.sub2ind((n, n), I, J)

        if type(d) is float:
            nz = min(max(1, int(round(d * p * q))), p * q)
            A = sparse(
                [[
                    spmatrix(normal(p * q, 1), Il, [0 for i in range(p * q)],
                             (n**2, 1))
                ],
                 [
                     spmatrix(
                         normal(nz * r, 1),
                         [i for j in range(r) for i in random.sample(Il, nz)],
                         [j for j in range(r) for i in range(nz)], (n**2, r))
                 ]])
        elif type(d) is list:
            if len(d) == r:
                nz = [min(max(1, int(round(v * p * q))), p * q) for v in d]
                nnz = sum(nz)
                A = sparse([[
                    spmatrix(normal(p * q, 1), Il, [0 for i in range(p * q)],
                             (n**2, 1))
                ],
                            [
                                spmatrix(normal(nnz, 1), [
                                    i for j in range(r)
                                    for i in random.sample(Il, nz[j])
                                ], [j for j in range(r) for i in range(nz[j])],
                                         (n**2, r))
                            ]])
        else:
            raise TypeError
        self._A = sparse([[A],
                          [
                              spmatrix(-1., range(0, n**2, n + 1),
                                       [0 for i in range(n)], (n**2, 1))
                          ]])

        self._b = matrix(0., (r + 1, 1))
        self._b[-1] = -1.
示例#7
0
def mk_rand(V, cone='posdef', seed=0):
    """
    Generates random matrix U with sparsity pattern V.
    - U is positive definite if cone is 'posdef'.
    - U is completable if cone is 'completable'.
    """
    if not (cone == 'posdef' or cone == 'completable'):
        raise ValueError, "cone must be 'posdef' (default) or 'completable' "

    from cvxopt import amd
    setseed(seed)
    n = V.size[0]

    U = +V
    U.V *= 0.0
    for i in xrange(n):
        u = normal(n, 1) / sqrt(n)
        base.syrk(u, U, beta=1.0, partial=True)

    # test if U is in cone: if not, add multiple of identity
    t = 0.1
    Ut = +U
    p = amd.order(Ut)
    # Vc, NF = chompack.embed(U,p)
    symb = chompack.symbolic(U, p)
    Vc = chompack.cspmatrix(symb) + U
    while True:
        # Uc = chompack.project(Vc,Ut)
        Uc = chompack.cspmatrix(symb) + Ut
        try:
            if cone == 'posdef':
                # positive definite?
                # Y = chompack.cholesky(Uc)
                Y = Uc.copy()
                chompack.cholesky(Y)
            elif cone == 'completable':
                # completable?
                # Y = chompack.completion(Uc)
                Y = Uc.copy()
                chompack.completion(Y)
            # Success: Ut is in cone
            U = +Ut
            break
        except:
            Ut = U + spmatrix(t, xrange(n), xrange(n), (n, n))
            t *= 2.0
    return U
示例#8
0
文件: base.py 项目: cvxopt/smcp
def mk_rand(V,cone='posdef',seed=0):
    """
    Generates random matrix U with sparsity pattern V.
    - U is positive definite if cone is 'posdef'.
    - U is completable if cone is 'completable'.
    """
    if not (cone=='posdef' or cone=='completable'):
        raise ValueError("cone must be 'posdef' (default) or 'completable' ")

    from cvxopt import amd
    setseed(seed)
    n = V.size[0]

    U = +V
    U.V *= 0.0
    for i in range(n):
        u = normal(n,1)/sqrt(n)
        base.syrk(u,U,beta=1.0,partial=True)

    # test if U is in cone: if not, add multiple of identity
    t = 0.1; Ut = +U
    p = amd.order(Ut)
    # Vc, NF = chompack.embed(U,p)
    symb = chompack.symbolic(U,p)
    Vc = chompack.cspmatrix(symb) + U
    while True:
        # Uc = chompack.project(Vc,Ut)
        Uc = chompack.cspmatrix(symb) + Ut
        try:
            if cone=='posdef':
                # positive definite?
                # Y = chompack.cholesky(Uc)
                Y = Uc.copy()
                chompack.cholesky(Y)
            elif cone=='completable':
                # completable?
                # Y = chompack.completion(Uc)
                Y = Uc.copy()
                chompack.completion(Y)
            # Success: Ut is in cone
            U = +Ut
            break
        except:
            Ut = U + spmatrix(t,range(n),range(n),(n,n))
            t*=2.0
    return U
示例#9
0
    def _gen_bandsdp(self, n, m, bw, seed):
        """Random data generator for SDP with band structure"""
        setseed(seed)

        I = matrix(
            [i for j in xrange(n) for i in xrange(j, min(j + bw + 1, n))])
        J = matrix(
            [j for j in xrange(n) for i in xrange(j, min(j + bw + 1, n))])
        V = spmatrix(0., I, J, (n, n))
        Il = misc.sub2ind((n, n), I, J)
        Id = matrix([i for i in xrange(len(Il)) if I[i] == J[i]])

        # generate random y with norm 1
        y0 = normal(m, 1)
        y0 /= blas.nrm2(y0)

        # generate random S0
        S0 = mk_rand(V, cone='posdef', seed=seed)
        X0 = mk_rand(V, cone='completable', seed=seed)

        # generate random A1,...,Am and set A0 = sum Ai*yi + S0
        A_ = normal(len(I), m + 1, std=1. / len(I))
        u = +S0.V
        blas.gemv(A_[:, 1:], y0, u, beta=1.0)
        A_[:, 0] = u
        # compute b
        x = +X0.V
        x[Id] *= 0.5
        self._b = matrix(0., (m, 1))
        blas.gemv(A_[:, 1:], x, self._b, trans='T', alpha=2.0)
        # form A
        self._A = spmatrix(A_[:], [i for j in xrange(m + 1) for i in Il],
                           [j for j in xrange(m + 1) for i in Il],
                           (n**2, m + 1))

        self._X0 = X0
        self._y0 = y0
        self._S0 = S0
示例#10
0
to the slope of the line connecting the two points.
"""

import pylab, math, pickle, nucnrm, sysid 
from cvxopt import base, blas, lapack, solvers
from cvxopt.base import normal, matrix, spmatrix, mul

maxiter = 8

data = "random"
#data = "sysid"
solvers.options['show_progress'] = False

if data is "random":
    # Generate random problem data
    base.setseed(0)

    p, q, n = 20, 20, 40
    A = normal(p*q, n)
    B = normal(p, q)
    x0 = normal(n, 1)

elif data is "sysid":
    iddata = pickle.load(open("CD_player_arm.bin","r"))
    N = 100
    u = iddata['u'][:,:N]
    y = iddata['y'][:,:N]
    m, N, p = u.size[0], u.size[1], y.size[0]
    r = min(int(30/p),int((N+1.0)/(p+m+1)+1.0))
    a = r*p
    c = r*m
示例#11
0
to the slope of the line connecting the two points.
"""

import pylab, math, pickle, nucnrm, sysid
from cvxopt import base, blas, lapack, solvers
from cvxopt.base import normal, matrix, spmatrix, mul

maxiter = 8

data = "random"
#data = "sysid"
solvers.options['show_progress'] = False

if data is "random":
    # Generate random problem data
    base.setseed(0)

    p, q, n = 20, 20, 40
    A = normal(p * q, n)
    B = normal(p, q)
    x0 = normal(n, 1)

elif data is "sysid":
    iddata = pickle.load(open("CD_player_arm.bin", "r"))
    N = 100
    u = iddata['u'][:, :N]
    y = iddata['y'][:, :N]
    m, N, p = u.size[0], u.size[1], y.size[0]
    r = min(int(30 / p), int((N + 1.0) / (p + m + 1) + 1.0))
    a = r * p
    c = r * m
示例#12
0
    def _gen_randsdp(self, V, m, d, seed):
        """
        Random data generator 
        """
        setseed(seed)
        n = self._n
        V = chompack.tril(V)
        N = len(V)
        I = V.I
        J = V.J
        Il = misc.sub2ind((n, n), I, J)
        Id = matrix([i for i in xrange(len(Il)) if I[i] == J[i]])

        # generate random y with norm 1
        y0 = normal(m, 1)
        y0 /= blas.nrm2(y0)

        # generate random S0, X0
        S0 = mk_rand(V, cone='posdef', seed=seed)
        X0 = mk_rand(V, cone='completable', seed=seed)

        # generate random A1,...,Am
        if type(d) is float:
            nz = min(max(1, int(round(d * N))), N)
            A = sparse(
                [[
                    spmatrix(normal(N, 1), Il, [0 for i in xrange(N)],
                             (n**2, 1))
                ],
                 [
                     spmatrix(
                         normal(nz * m, 1),
                         [i for j in xrange(m) for i in random.sample(Il, nz)],
                         [j for j in xrange(m) for i in xrange(nz)], (n**2, m))
                 ]])
        elif type(d) is list:
            if len(d) == m:
                nz = [min(max(1, int(round(v * N))), N) for v in d]
                nnz = sum(nz)
                A = sparse(
                    [[
                        spmatrix(normal(N, 1), Il, [0 for i in xrange(N)],
                                 (n**2, 1))
                    ],
                     [
                         spmatrix(normal(nnz, 1), [
                             i for j in xrange(m)
                             for i in random.sample(Il, nz[j])
                         ], [j for j in xrange(m) for i in xrange(nz[j])],
                                  (n**2, m))
                     ]])
        else:
            raise TypeError

        # compute A0
        u = +S0.V
        for k in xrange(m):
            base.gemv(A[:, k + 1][Il], matrix(y0[k]), u, beta=1.0, trans='N')
        A[Il, 0] = u
        self._A = A

        # compute b
        X0[Il[Id]] *= 0.5
        self._b = matrix(0., (m, 1))
        u = matrix(0.)
        for k in xrange(m):
            base.gemv(A[:, k + 1][Il], X0.V, u, trans='T', alpha=2.0)
            self._b[k] = u