示例#1
0
 def _define_data(self, data: Dict[str, Any]) -> Tuple:
     """Define data parts from the data reference."""
     c = data[s.C]
     b = data[s.B]
     A = dok_matrix(data[s.A])
     # Save the dok_matrix.
     data[s.A] = A
     dims = dims_to_solver_dict(data[s.DIMS])
     return A, b, c, dims
示例#2
0
    def solve_via_data(self,
                       data,
                       warm_start: bool,
                       verbose: bool,
                       solver_opts,
                       solver_cache=None):
        """Returns the result of the call to the solver.

        Parameters
        ----------
        data : dict
            Data used by the solver.
        warm_start : bool
            Not used.
        verbose : bool
            Should the solver print output?
        solver_opts : dict
            Additional arguments for the solver.

        Returns
        -------
        tuple
            (status, optimal value, primal, equality dual, inequality dual)
        """
        import gurobipy

        c = data[s.C]
        b = data[s.B]
        A = sp.csr_matrix(data[s.A])
        dims = dims_to_solver_dict(data[s.DIMS])

        n = c.shape[0]

        # Create a new model
        if 'env' in solver_opts:
            # Specifies environment to create Gurobi model for control over licensing and parameters
            # https://www.gurobi.com/documentation/9.1/refman/environments.html
            default_env = solver_opts['env']
            del solver_opts['env']
            model = gurobipy.Model(env=default_env)
        else:
            # Create Gurobi model using default (unspecified) environment
            model = gurobipy.Model()

        # Pass through verbosity
        model.setParam("OutputFlag", verbose)

        variables = []
        for i in range(n):
            # Set variable type.
            if i in data[s.BOOL_IDX]:
                vtype = gurobipy.GRB.BINARY
            elif i in data[s.INT_IDX]:
                vtype = gurobipy.GRB.INTEGER
            else:
                vtype = gurobipy.GRB.CONTINUOUS
            variables.append(
                model.addVar(
                    obj=c[i],
                    name="x_%d" % i,
                    vtype=vtype,
                    # Gurobi's default LB is 0 (WHY???)
                    lb=-gurobipy.GRB.INFINITY,
                    ub=gurobipy.GRB.INFINITY))
        model.update()

        leq_start = dims[s.EQ_DIM]
        leq_end = dims[s.EQ_DIM] + dims[s.LEQ_DIM]
        if hasattr(model, 'addMConstrs'):
            eq_constrs = model.addMConstrs(A[:leq_start, :], None,
                                           gurobipy.GRB.EQUAL, b[:leq_start])
            ineq_constrs = model.addMConstrs(A[leq_start:leq_end, :], None,
                                             gurobipy.GRB.LESS_EQUAL,
                                             b[leq_start:leq_end])
        else:
            eq_constrs = self.add_model_lin_constr(model, variables,
                                                   range(dims[s.EQ_DIM]),
                                                   gurobipy.GRB.EQUAL, A, b)
            ineq_constrs = self.add_model_lin_constr(model, variables,
                                                     range(leq_start, leq_end),
                                                     gurobipy.GRB.LESS_EQUAL,
                                                     A, b)

        # TODO: add all SOC constrs at once! Be careful with return values
        soc_start = leq_end
        soc_constrs = []
        new_leq_constrs = []
        for constr_len in dims[s.SOC_DIM]:
            soc_end = soc_start + constr_len
            soc_constr, new_leq, new_vars = self.add_model_soc_constr(
                model, variables, range(soc_start, soc_end), A, b)
            soc_constrs.append(soc_constr)
            new_leq_constrs += new_leq
            variables += new_vars
            soc_start += constr_len

        # Set parameters
        # TODO user option to not compute duals.
        model.setParam("QCPDual", True)
        for key, value in solver_opts.items():
            model.setParam(key, value)

        solution = {}
        try:
            model.optimize()
            if model.Status == 4 and solver_opts.get('reoptimize', False):
                # INF_OR_UNBD. Solve again to get a definitive answer.
                model.setParam("DualReductions", 0)
                model.optimize()
            solution["value"] = model.ObjVal
            solution["primal"] = np.array([v.X for v in variables])

            # Only add duals if not a MIP.
            # Not sure why we need to negate the following,
            # but need to in order to be consistent with other solvers.
            vals = []
            if not (data[s.BOOL_IDX] or data[s.INT_IDX]):
                lin_constrs = eq_constrs + ineq_constrs + new_leq_constrs
                vals += model.getAttr('Pi', lin_constrs)
                vals += model.getAttr('QCPi', soc_constrs)
                solution["y"] = -np.array(vals)
                solution[s.EQ_DUAL] = solution["y"][0:dims[s.EQ_DIM]]
                solution[s.INEQ_DUAL] = solution["y"][dims[s.EQ_DIM]:]
        except Exception:
            pass
        solution[s.SOLVE_TIME] = model.Runtime
        solution["status"] = self.STATUS_MAP.get(model.Status, s.SOLVER_ERROR)
        if solution["status"] == s.SOLVER_ERROR and model.SolCount:
            solution["status"] = s.OPTIMAL_INACCURATE
        if solution["status"] == s.USER_LIMIT and not model.SolCount:
            solution["status"] = s.INFEASIBLE_INACCURATE
        solution["model"] = model

        return solution
示例#3
0
    def solve_via_data(self,
                       data,
                       warm_start: bool,
                       verbose: bool,
                       solver_opts,
                       solver_cache=None):
        import cplex

        c = data[s.C]
        b = data[s.B]
        A = dok_matrix(data[s.A])
        # Save the dok_matrix.
        data[s.A] = A
        dims = dims_to_solver_dict(data[s.DIMS])

        n = c.shape[0]

        model = cplex.Cplex()
        variables = []
        # cpx_constrs will contain CpxConstr namedtuples (see above).
        cpx_constrs = []
        vtype = []
        if data[s.BOOL_IDX] or data[s.INT_IDX]:
            for i in range(n):
                # Set variable type.
                if i in data[s.BOOL_IDX]:
                    vtype.append('B')
                elif i in data[s.INT_IDX]:
                    vtype.append('I')
                else:
                    vtype.append('C')
        else:
            # If we specify types (even with 'C'), then the problem will
            # be interpreted as a MIP. Leaving vtype as an empty list
            # here, will ensure that the problem type remains an LP.
            pass
        # Add the variables in a batch
        variables = list(
            model.variables.add(
                obj=[c[i] for i in range(n)],
                lb=[-cplex.infinity] * n,  # default LB is 0
                ub=[cplex.infinity] * n,
                types="".join(vtype),
                names=["x_%d" % i for i in range(n)]))

        # Add equality constraints
        cpx_constrs += [
            _CpxConstr(_LIN, x) for x in self.add_model_lin_constr(
                model, variables, range(dims[s.EQ_DIM]), 'E', A, b)
        ]

        # Add inequality (<=) constraints
        leq_start = dims[s.EQ_DIM]
        leq_end = dims[s.EQ_DIM] + dims[s.LEQ_DIM]
        cpx_constrs += [
            _CpxConstr(_LIN, x) for x in self.add_model_lin_constr(
                model, variables, range(leq_start, leq_end), 'L', A, b)
        ]

        # Add SOC constraints
        soc_start = leq_end
        for constr_len in dims[s.SOC_DIM]:
            soc_end = soc_start + constr_len
            soc_constr, new_leq, new_vars = self.add_model_soc_constr(
                model, variables, range(soc_start, soc_end), A, b)
            cpx_constrs.append(_CpxConstr(_QUAD, soc_constr))
            cpx_constrs += [_CpxConstr(_LIN, x) for x in new_leq]
            variables += new_vars
            soc_start += constr_len

        # Set verbosity
        if not verbose:
            hide_solver_output(model)

        # For CVXPY, we set the qcpduals parameter here, but the user can
        # easily override it via the "cplex_params" solver option (see
        # set_parameters function).
        model.parameters.preprocessing.qcpduals.set(
            model.parameters.preprocessing.qcpduals.values.force)

        # Set parameters
        reoptimize = solver_opts.pop('reoptimize', False)
        set_parameters(model, solver_opts)

        # Solve problem
        solution = {"model": model}
        try:
            start_time = model.get_time()
            model.solve()
            solution[s.SOLVE_TIME] = model.get_time() - start_time

            ambiguous_status = get_status(model) == s.INFEASIBLE_OR_UNBOUNDED
            if ambiguous_status and reoptimize:
                model.parameters.preprocessing.presolve.set(0)
                start_time = model.get_time()
                model.solve()
                solution[s.SOLVE_TIME] += model.get_time() - start_time

        except Exception:
            pass

        return solution
示例#4
0
    def solve_via_data(self,
                       data,
                       warm_start: bool,
                       verbose: bool,
                       solver_opts,
                       solver_cache=None):

        import xpress as xp

        c = data[s.C]  # objective coefficients

        dims = dims_to_solver_dict(
            data[s.DIMS])  # contains number of columns, rows, etc.

        nrowsEQ = dims[s.EQ_DIM]
        nrowsLEQ = dims[s.LEQ_DIM]
        nrows = nrowsEQ + nrowsLEQ

        # linear constraints
        b = data[s.B][:nrows]  # right-hand side
        A = data[s.A][:nrows]  # coefficient matrix

        # Problem
        self.prob_ = xp.problem()

        mstart = makeMstart(A, len(c), 1)

        varGroups = {
        }  # If origprob is passed, used to tie IIS to original constraints
        transf2Orig = {
        }  # Ties transformation constraints to originals via varGroups
        nOrigVar = len(c)

        # Uses flat naming. Warning: this mixes
        # original with auxiliary variables.

        varnames = ['x_{0:05d}'.format(i) for i in range(len(c))]
        linRownames = ['lc_{0:05d}'.format(i) for i in range(len(b))]

        if verbose:
            self.prob_.controls.miplog = 2
            self.prob_.controls.lplog = 1
            self.prob_.controls.outputlog = 1
        else:
            self.prob_.controls.miplog = 0
            self.prob_.controls.lplog = 0
            self.prob_.controls.outputlog = 0
            self.prob_.controls.xslp_log = -1

        self.prob_.loadproblem(
            probname="CVX_xpress_conic",
            # constraint types
            qrtypes=['E'] * nrowsEQ + ['L'] * nrowsLEQ,
            rhs=b,  # rhs
            range=None,  # range
            obj=c,  # obj coeff
            mstart=mstart,  # mstart
            mnel=None,  # mnel (unused)
            # linear coefficients
            mrwind=A.indices[A.data != 0],  # row indices
            dmatval=A.data[A.data != 0],  # coefficients
            dlb=[-xp.infinity] * len(c),  # lower bound
            dub=[xp.infinity] * len(c),  # upper bound
            colnames=varnames,  # column names
            rownames=linRownames)  # row    names

        # Set variable types for discrete variables
        self.prob_.chgcoltype(
            data[s.BOOL_IDX] + data[s.INT_IDX],
            'B' * len(data[s.BOOL_IDX]) + 'I' * len(data[s.INT_IDX]))

        currow = nrows

        iCone = 0

        auxVars = set(range(nOrigVar, len(c)))

        # Conic constraints
        #
        # Quadratic objective and constraints fall in this category,
        # as all quadratic stuff is converted into a cone via a linear transformation
        for k in dims[s.SOC_DIM]:

            # k is the size of the i-th cone, where i is the index
            # within dims [s.SOC_DIM]. The cone variables in
            # CVXOPT, apparently, are separate variables that are
            # marked as conic but not shown in a cone explicitly.

            A = data[s.A][currow:currow + k].tocsr()
            b = data[s.B][currow:currow + k]
            currow += k

            # Create new (cone) variables and add them to the problem
            conevar = np.array([
                xp.var(name='cX{0:d}_{1:d}'.format(iCone, i),
                       lb=-xp.infinity if i > 0 else 0) for i in range(k)
            ])

            self.prob_.addVariable(conevar)

            initrow = self.prob_.attributes.rows

            mstart = makeMstart(A, k, 0)

            trNames = ['linT_qc{0:d}_{1:d}'.format(iCone, i) for i in range(k)]

            # Linear transformation for cone variables <--> original variables
            self.prob_.addrows(
                ['E'] * k,  # qrtypes
                b,  # rhs
                mstart,  # mstart
                A.indices[A.data != 0],  # ind
                A.data[A.data != 0],  # dmatval
                names=trNames)  # row names

            self.prob_.chgmcoef([initrow + i for i in range(k)], conevar,
                                [1] * k)

            conename = 'cone_qc{0:d}'.format(iCone)
            # Real cone on the cone variables (if k == 1 there's no
            # need for this constraint as y**2 >= 0 is redundant)
            if k > 1:
                self.prob_.addConstraint(
                    xp.constraint(constraint=xp.Sum(
                        conevar[i]**2 for i in range(1, k)) <= conevar[0]**2,
                                  name=conename))

            auxInd = list(set(A.indices) & auxVars)

            if len(auxInd) > 0:
                group = varGroups[varnames[auxInd[0]]]
                for i in trNames:
                    transf2Orig[i] = group
                transf2Orig[conename] = group

            iCone += 1

        # End of the conditional (warm-start vs. no warm-start) code,
        # set options, solve, and report.

        # Set options
        #
        # The parameter solver_opts is a dictionary that contains only
        # one key, 'solver_opt', and its value is a dictionary
        # {'control': value}, matching perfectly the format used by
        # the Xpress Python interface.

        self.prob_.setControl({
            i: solver_opts[i]
            for i in solver_opts if i in xp.controls.__dict__
        })

        if 'bargaptarget' not in solver_opts:
            self.prob_.controls.bargaptarget = 1e-30

        if 'feastol' not in solver_opts:
            self.prob_.controls.feastol = 1e-9

        # If option given, write file before solving
        if 'write_mps' in solver_opts:
            self.prob_.write(solver_opts['write_mps'])

        # Solve
        self.prob_.solve()

        results_dict = {
            'problem': self.prob_,
            'status': self.prob_.getProbStatus(),
            'obj_value': self.prob_.getObjVal(),
        }

        status_map_lp, status_map_mip = get_status_maps()

        if 'mip_' in self.prob_.getProbStatusString():
            status = status_map_mip[results_dict['status']]
        else:
            status = status_map_lp[results_dict['status']]

        results_dict[s.XPRESS_TROW] = transf2Orig

        results_dict[
            s.XPRESS_IIS] = None  # Return no IIS if problem is feasible

        if status in s.SOLUTION_PRESENT:
            results_dict['x'] = self.prob_.getSolution()
            if not (data[s.BOOL_IDX] or data[s.INT_IDX]):
                results_dict['y'] = -np.array(self.prob_.getDual())

        elif status == s.INFEASIBLE:

            # Retrieve all IIS. For LPs there can be more than one,
            # but for QCQPs there is only support for one IIS.

            iisIndex = 0

            self.prob_.iisfirst(0)  # compute all IIS

            row, col, rtype, btype, duals, rdcs, isrows, icols = [], [], [], [], [], [], [], []

            self.prob_.getiisdata(0, row, col, rtype, btype, duals, rdcs,
                                  isrows, icols)

            origrow = []
            for iRow in row:
                if iRow.name in transf2Orig:
                    name = transf2Orig[iRow.name]
                else:
                    name = iRow.name

                if name not in origrow:
                    origrow.append(name)

            results_dict[s.XPRESS_IIS] = [{
                'orig_row': origrow,
                'row': row,
                'col': col,
                'rtype': rtype,
                'btype': btype,
                'duals': duals,
                'redcost': rdcs,
                'isolrow': isrows,
                'isolcol': icols
            }]

            while self.prob_.iisnext() == 0:
                iisIndex += 1
                self.prob_.getiisdata(iisIndex, row, col, rtype, btype, duals,
                                      rdcs, isrows, icols)
                results_dict[s.XPRESS_IIS].append(
                    (row, col, rtype, btype, duals, rdcs, isrows, icols))

        # Generate solution.
        solution = {}

        status_map_lp, status_map_mip = get_status_maps()

        if data[s.BOOL_IDX] or data[s.INT_IDX]:
            solution[s.STATUS] = status_map_mip[results_dict['status']]
        else:
            solution[s.STATUS] = status_map_lp[results_dict['status']]

        if solution[s.STATUS] in s.SOLUTION_PRESENT:

            solution[s.PRIMAL] = results_dict['x']
            solution[s.VALUE] = results_dict['obj_value']

            if not (data[s.BOOL_IDX] or data[s.INT_IDX]):
                solution[s.EQ_DUAL] = results_dict['y'][0:dims[s.EQ_DIM]]
                solution[s.INEQ_DUAL] = results_dict['y'][dims[s.EQ_DIM]:]

        solution[s.XPRESS_IIS] = results_dict[s.XPRESS_IIS]
        solution[s.XPRESS_TROW] = results_dict[s.XPRESS_TROW]

        solution['getObjVal'] = self.prob_.getObjVal()

        solution[s.SOLVE_TIME] = self.prob_.attributes.time

        del self.prob_

        return solution
示例#5
0
    def solve_via_data(self,
                       data,
                       warm_start: bool,
                       verbose: bool,
                       solver_opts,
                       solver_cache=None):
        # Import basic modelling tools of cylp
        from cylp.cy import CyClpSimplex
        from cylp.py.modeling.CyLPModel import CyLPArray, CyLPModel

        c = data[s.C]
        b = data[s.B]
        A = data[s.A]
        dims = dims_to_solver_dict(data[s.DIMS])

        n = c.shape[0]

        # Problem
        model = CyLPModel()

        # Variables
        x = model.addVariable('x', n)

        # Constraints
        # eq
        model += A[0:dims[s.EQ_DIM], :] * x == CyLPArray(b[0:dims[s.EQ_DIM]])

        # leq
        leq_start = dims[s.EQ_DIM]
        leq_end = dims[s.EQ_DIM] + dims[s.LEQ_DIM]
        model += A[leq_start:leq_end, :] * x <= CyLPArray(b[leq_start:leq_end])

        # Objective
        model.objective = c

        # Convert model
        model = CyClpSimplex(model)

        # No boolean vars available in Cbc -> model as int + restrict to [0,1]
        if data[s.BOOL_IDX] or data[s.INT_IDX]:
            # Mark integer- and binary-vars as "integer"
            model.setInteger(x[data[s.BOOL_IDX]])
            model.setInteger(x[data[s.INT_IDX]])

            # Restrict binary vars only
            idxs = data[s.BOOL_IDX]
            n_idxs = len(idxs)

            model.setColumnLowerSubset(np.arange(n_idxs, dtype=np.int32),
                                       np.array(idxs, np.int32),
                                       np.zeros(n_idxs))

            model.setColumnUpperSubset(np.arange(n_idxs, dtype=np.int32),
                                       np.array(idxs, np.int32),
                                       np.ones(n_idxs))

        # Verbosity Clp
        if not verbose:
            model.logLevel = 0

        # Build model & solve
        status = None
        if data[s.BOOL_IDX] or data[s.INT_IDX]:
            # Convert model
            cbcModel = model.getCbcModel()
            for key, value in solver_opts.items():
                setattr(cbcModel, key, value)

            # Verbosity Cbc
            if not verbose:
                cbcModel.logLevel = 0

            # cylp: /cylp/cy/CyCbcModel.pyx#L134
            # Call CbcMain. Solve the problem using the same parameters used by
            # CbcSolver. Equivalent to solving the model from the command line
            # using cbc's binary.
            cbcModel.solve()
            status = cbcModel.status
        else:
            # cylp: /cylp/cy/CyClpSimplex.pyx
            # Run CLP's initialSolve. It does a presolve and uses primal or dual
            # Simplex to solve a problem.
            status = model.initialSolve()

        solution = {}
        if data[s.BOOL_IDX] or data[s.INT_IDX]:
            solution["status"] = self.STATUS_MAP_MIP[status]
            solution["primal"] = cbcModel.primalVariableSolution['x']
            solution["value"] = cbcModel.objectiveValue
        else:
            solution["status"] = self.STATUS_MAP_LP[status]
            solution["primal"] = model.primalVariableSolution['x']
            solution["value"] = model.objectiveValue

        return solution