示例#1
0
def test_cvx_sdp():
    """
    Test that the CVX SDP optimization works.
    """
    x1, x2, x3 = cp.Variable(), cp.Variable(), cp.Variable(),

    A1 = np.matrix([[-7, -11], [-11, 3]])
    A2 = np.matrix([[7, -18], [-18, 8]])
    A3 = np.matrix([[-2, -8], [-8, 1]])
    A0 = np.matrix([[33, -9], [-9, 26]])

    B1 = np.matrix([
        [-21, -11, 0],
        [-11, 10, 8],
        [0, 8, 5],
    ])
    B2 = np.matrix([
        [0, 10, 16],
        [10, -10, -10],
        [16, -10, 3],
    ])
    B3 = np.matrix([
        [-5, 2, -17],
        [2, -6, -7],
        [-17, 8, 6],
    ])
    B0 = np.matrix([
        [14, 9, 40],
        [9, 91, 10],
        [40, 10, 15],
    ])

    prob = cp.Problem(cp.Minimize(x1 - x2 + x3), [
        A0 - x1 * A1 - x2 * A2 - x3 * A3 == cp.semidefinite(2),
        B0 - x1 * B1 - x2 * B2 - x3 * B3 == cp.semidefinite(3),
    ])

    prob.solve()

    print prob.status

    x = np.matrix([
        x1.value,
        x2.value,
        x3.value,
    ]).T
    x_ = np.matrix([
        [-3.68e-01],
        [1.90e+00],
        [-8.88e-01],
    ])
    print x.T, x_.T
    assert np.allclose(x, x_, atol=1e-2)
示例#2
0
def test_cvx_sdp():
    """
    Test that the CVX SDP optimization works.
    """
    x1, x2, x3 = cp.Variable(), cp.Variable(), cp.Variable(),

    A1 = np.matrix([[-7, -11], 
                    [-11, 3]])
    A2 = np.matrix([[7, -18], 
                    [-18, 8]])
    A3 = np.matrix([[-2, -8], 
                    [-8, 1]])
    A0 = np.matrix([[33, -9], 
                    [-9, 26]])

    B1 = np.matrix([[-21, -11, 0], 
                    [-11, 10,  8],
                    [0, 8,  5], ])
    B2 = np.matrix([[ 0,  10, 16], 
                    [10, -10, -10],
                    [16, -10,  3], ])
    B3 = np.matrix([[-5, 2, -17], 
                    [2, -6,  -7],
                    [-17, 8,  6], ])
    B0 = np.matrix([[14, 9, 40], 
                    [9, 91,  10],
                    [40, 10,  15], ])


    prob = cp.Problem(
        cp.Minimize( x1 - x2 + x3 ), [
            A0 - x1 * A1 - x2 * A2 - x3 * A3 == cp.semidefinite(2),
            B0 - x1 * B1 - x2 * B2 - x3 * B3 == cp.semidefinite(3),
            ])

    prob.solve()

    print prob.status

    x = np.matrix([
        x1.value,
        x2.value,
        x3.value,
        ]).T
    x_ = np.matrix([
        [-3.68e-01],
        [ 1.90e+00],
        [-8.88e-01],
        ])
    print x.T, x_.T
    assert np.allclose(x, x_, atol=1e-2)
    def test_key_error(self):
        """Test examples that caused key error.
        """
        import cvxpy as cvx
        x = cvx.Variable()
        u = -cvx.exp(x)
        prob = cvx.Problem(cvx.Maximize(u), [x == 1])
        prob.solve(verbose=True, solver=cvx.CVXOPT)
        prob.solve(verbose=True, solver=cvx.CVXOPT)

        ###########################################

        import numpy as np
        import cvxopt
        import cvxpy as cp

        kD=2
        Sk=cp.semidefinite(kD)
        Rsk=cp.Parameter(kD,kD)
        mk=cp.Variable(kD,1)
        musk=cp.Parameter(kD,1)

        logpart=-0.5*cp.log_det(Sk)+0.5*cp.matrix_frac(mk,Sk)+(kD/2.)*np.log(2*np.pi)
        linpart=mk.T*musk-0.5*cp.trace(Sk*Rsk)
        obj=logpart-linpart
        prob=cp.Problem(cp.Minimize(obj))
        musk.value=np.ones((2,1))
        covsk=np.diag([0.3,0.5])
        Rsk.value=covsk+(musk.value*musk.value.T)
        prob.solve(verbose=True,solver=cp.CVXOPT)
        print "second solve"
        prob.solve(verbose=False, solver=cp.CVXOPT)
    def omega_solve(self, snk, alpha):

        # Create a variable that is constrained to the positive semidefinite cone.
        n = len(snk[0])
        S = cvx.semidefinite(n)

        # Form the logdet(S) - tr(SY) objective. Note the use of a set
        # comprehension to form a set of the diagonal elements of S*Y, and the
        # native sum function, which is compatible with cvxpy, to compute the trace.
        # TODO: If a cvxpy trace operator becomes available, use it!
        obj = cvx.Minimize(-cvx.log_det(S) + sum([(S * np.array(snk))[i, i]
                                                  for i in range(n)]))

        # Set constraint.
        constraints = [cvx.sum_entries(cvx.abs(S)) <= alpha]

        # Form and solve optimization problem
        prob = cvx.Problem(obj, constraints)
        prob.solve()
        if prob.status != cvx.OPTIMAL:
            raise Exception('CVXPY Error')

        # If the covariance matrix R is desired, here is how it to create it.

        # Threshold S element values to enforce exact zeros:
        S = S.value

        S[abs(S) <= 1e-4] = 0
        return np.array(S).tolist()
示例#5
0
def test_cvx_polynomial():
    """
    Test that the SDP relaxation for polynomial optimization works on simple examples. 
    In particular, consider min (x-2)^2.
    We get this to be x^2 - 2x + 1, which is
    min [1 -2 1]' y, 
    subj to yy' >= 0
    """

    a = 4.0

    A = cp.Variable(2,2)

    # No equality constraint

    prob = cp.Problem( 
        cp.Minimize( a**2 * A[0,0] - 2 * a * A[0,1] + A[1,1] ), [
             A == cp.semidefinite(2),
             A[0,0] == 1.
            ])
    prob.solve()

    print prob.status
    print A.value

    assert False
示例#6
0
文件: sdp.py 项目: jre21/SDP
    def cvx_solve(self, obj, verbose=False):
        """Solve an objective function with cvx.

        obj: vector representing the linear objective to be minimized
        verbose: whether cvx should print verbose output to stdout

        Returns a pair representing the optimum of the psd and nsd
        components (None if that component is either infeasible or
        unbounded along the optimization direction).  Also sets
        psd_spec, nsd_spec, and fully_(un)bounded_directions.

        """
        import cvxpy as cvx

        x = cvx.Variable(name="x")
        y = cvx.Variable(name="y")
        z = cvx.Variable(name="z")
        # dummy variable to code semidefinite constraint
        T = cvx.semidefinite(5, name="T")
        spec = self.A * x + self.B * y + self.C * z + self.D
        objective = cvx.Minimize(obj[0] * x + obj[1] * y + obj[2] * z)
        out_psd = out_nsd = None

        # check PSD component
        if self.psd_spec:
            psd = cvx.Problem(objective, [T == spec])
            psd.solve(verbose=verbose)
            if psd.status == cvx.OPTIMAL:
                out_psd = [x.value, y.value, z.value]
            elif psd.status == cvx.INFEASIBLE:
                self.psd_spec = False

        # check NSD component
        if self.nsd_spec:
            nsd = cvx.Problem(objective, [T == -spec])
            nsd.solve(verbose=verbose)
            if nsd.status == cvx.OPTIMAL:
                out_nsd = [x.value, y.value, z.value]
                if self.psd_spec and psd.status == cvx.OPTIMAL:
                    self.fully_bounded_directions += 1
            elif nsd.status == cvx.UNBOUNDED and self.psd_spec and psd.status == cvx.UNBOUNDED:
                self.fully_unbounded_directions += 1
            elif nsd.status == cvx.INFEASIBLE:
                self.nsd_spec = False

        return out_psd, out_nsd
示例#7
0
    def __setup(self):  
        M   = self.__M           
        Rreal = cp.semidefinite(2*M, 'Rreal')
        # Rreal = [B1 B3
        #          B2 B4 ]
        #       = [ReR -ImR
        #          ImR  ReR]    
        B1 = Rreal[0:M, 0:M]
        B2 = Rreal[M:(2*M), 0:M]
        B3 = Rreal[0:M, M:(2*M)]
        B4 = Rreal[M:(2*M), M:(2*M)]
        rho = cp.Variable(1+M**2, 1, 'rho')

        constraints = [] # the list of the constraint equations and inequations
        constraints.append(0 <= rho[0])
        k   = 1
        for q in range(M):
            for p in range(M):
                if p == q:
                    constraints.append(rho[k] == B1[p, q])
                    k += 1
                elif p > q:
                    constraints.append(rho[k] == B1[p, q])
                    k += 1
                    constraints.append(rho[k] == B2[p, q])
                    k += 1
            
        constraints.append(B1 == B4)
        constraints.append(B1 == B1.T)
        constraints.append(B3 == -B2)
        constraints.append(B3 == -B3.T)
        
        constraints.extend([B1[k,k]==1 for k in range(M)])


        objective   = cp.Minimize(cp.quad_form(rho, self.__Gamma))

        problem     = cp.Problem(objective, constraints)
        self.__problem  = problem
        self.__ReR      = B1
        self.__ImR      = B2
示例#8
0
    def __setup(self):
        M = self.__M
        Rreal = cp.semidefinite(2 * M, 'Rreal')
        # Rreal = [B1 B3
        #          B2 B4 ]
        #       = [ReR -ImR
        #          ImR  ReR]
        B1 = Rreal[0:M, 0:M]
        B2 = Rreal[M:(2 * M), 0:M]
        B3 = Rreal[0:M, M:(2 * M)]
        B4 = Rreal[M:(2 * M), M:(2 * M)]
        rho = cp.Variable(1 + M**2, 1, 'rho')

        constraints = [
        ]  # the list of the constraint equations and inequations
        constraints.append(0 <= rho[0])
        k = 1
        for q in range(M):
            for p in range(M):
                if p == q:
                    constraints.append(rho[k] == B1[p, q])
                    k += 1
                elif p > q:
                    constraints.append(rho[k] == B1[p, q])
                    k += 1
                    constraints.append(rho[k] == B2[p, q])
                    k += 1

        constraints.append(B1 == B4)
        constraints.append(B1 == B1.T)
        constraints.append(B3 == -B2)
        constraints.append(B3 == -B3.T)

        constraints.extend([B1[k, k] == 1 for k in range(M)])

        objective = cp.Minimize(cp.quad_form(rho, self.__Gamma))

        problem = cp.Problem(objective, constraints)
        self.__problem = problem
        self.__ReR = B1
        self.__ImR = B2
示例#9
0
def graphlasso(X, tauk, muk, lambd):  # tauk nxk matrix, muk: pxk
    Ss = []
    for k in range(len(muk)):
        Xc = X - muk[k]
        cluster_cov = np.array([
            np.array(np.mat(vect).T * np.mat(vect)) for vect in Xc
        ])  #check perf with np.dot(X.T, X) and take diag
        Snk = np.dot(cluster_cov.T, tauk[:, k])
        S = cvx.semidefinite(len(muk[0]))
        obj = cvx.Maximize(
            cvx.log_det(S) - sum([(S * Snk)[i, i] for i in range(len(muk))]))
        constraints = [cvx.sum_entries(cvx.abs(S)) <= lambd[k]]
        # Form and solve optimization problem
        prob = cvx.Problem(obj, constraints)
        prob.solve()
        if prob.status != cvx.OPTIMAL:
            print "error"
            raise Exception('CVXPY Error')
        S = S.value
        # S[abs(S) <= 1e-4] = 0 #force exact zeros
        Ss += [S]
    return Ss
示例#10
0
def test_cvx_polynomial():
    """
    Test that the SDP relaxation for polynomial optimization works on simple examples. 
    In particular, consider min (x-2)^2.
    We get this to be x^2 - 2x + 1, which is
    min [1 -2 1]' y, 
    subj to yy' >= 0
    """

    a = 4.0

    A = cp.Variable(2, 2)

    # No equality constraint

    prob = cp.Problem(cp.Minimize(a**2 * A[0, 0] - 2 * a * A[0, 1] + A[1, 1]),
                      [A == cp.semidefinite(2), A[0, 0] == 1.])
    prob.solve()

    print prob.status
    print A.value

    assert False
示例#11
0
# -*- coding: utf-8 -*-
"""
Created on Mon Jul 14 13:45:05 2014

@author: cyrusl
"""

import cvxpy as cvx

S = cvx.semidefinite(4)
x = cvx.vstack(0.1, 0.2, -0.05, 0.1)
obj = cvx.Maximize(x.T*S*x)

constraints =  [S[0,0] == 0.2]
constraints += [S[1,1] == 0.1]
constraints += [ S[2,2] == 0.3]
constraints += [ S[3,3] == 0.1 ]

constraints += [ S[0,1] >= 0 ]
constraints += [ S[0,2] >= 0 ] 
constraints += [ S[1,2] <= 0 ]
constraints += [ S[1,3] <= 0 ]
constraints += [ S[2,3] >= 0 ]
#constraints += [ S[0,3] == 0 ]      
prob = cvx.Problem(obj, constraints)
prob.solve()

print "status:", prob.status
print "optimal value:", sqrt(prob.value)
print "optimal covariance matrix:", S.value
示例#12
0
文件: sdp.py 项目: zhb0318/cvxpy
# # create data P
# P = cvxopt.matrix(np.matrix('4 1 3; 1 3.5 0.8; 3 0.8 1'))
# Z = cvx.Variable(3,3)

# objective = cvx.Minimize( sum(cvx.square(P - Z)) )
# constr = [cvx.constraints.semi_definite.SDP(P)]
# prob = cvx.Problem(objective, constr)
# prob.solve()

import cvxpy as cp
import numpy as np
import cvxopt

# create data P
P = cp.Parameter(3,3)
Z = cp.semidefinite(3)

objective = cp.Minimize( cp.lambda_max(P) - cp.lambda_min(P - Z) )
prob = cp.Problem(objective, [Z >= 0])
P.value = cvxopt.matrix(np.matrix('4 1 3; 1 3.5 0.8; 3 0.8 1'))
prob.solve()
print "optimal value =", prob.value


# [ 4,     1+2*j,     3-j       ; ...
#       1-2*j, 3.5,       0.8+2.3*j ; ...
#       3+j,   0.8-2.3*j, 4         ];
#
# % Construct and solve the model
# n = size( P, 1 );
# cvx_begin sdp
示例#13
0
def TVGL(data,
         lengthOfSlice,
         lamb,
         beta,
         indexOfPenalty,
         verbose=False,
         eps=3e-3,
         epsAbs=1e-3,
         epsRel=1e-3):
    if indexOfPenalty == 1:
        print('Use l-1 penalty function')
        penalty = inferGraphL1
    elif indexOfPenalty == 2:
        print('Use l-2 penalty function')
        penalty = inferGraphL2
    elif indexOfPenalty == 3:
        print('Use laplacian penalty function')
        penalty = inferGraphLaplacian
    elif indexOfPenalty == 4:
        print('Use l-inf penalty function')
        penalty = inferGraphLinf
    else:
        print('Use perturbation node penalty function')
        penalty = inferGraphPN

    numberOfTotalSamples = data.shape[0]
    timestamps = int(numberOfTotalSamples / lengthOfSlice)
    size = data.shape[1]
    # Generate empirical covariance matrices
    sampleSet = []  # list of array
    k = 0

    empCovSet = []  # list of array

    for i in range(timestamps):
        # Generate the slice of samples for each timestamp from data
        k_next = min(k + lengthOfSlice, numberOfTotalSamples)
        samples = data[k:k_next, :]
        k = k_next
        sampleSet.append(samples)

        empCov = GenEmpCov(sampleSet[i].T)
        empCovSet.append(empCov)

    # delete: for checking
    print((sampleSet.__len__()))  #
    #    print empCovSet
    print(('lambda = %s, beta = %s' % (lamb, beta)))

    # Define a graph representation to solve
    gvx = penalty.TGraphVX()
    for i in range(timestamps):
        n_id = i
        S = cvxpy.semidefinite(size, name='S')
        obj = -cvxpy.log_det(S) + cvxpy.trace(
            empCovSet[i] * S)  #+ alpha*norm(S,1)
        gvx.AddNode(n_id, obj)

        if (i > 0):  #Add edge to previous timestamp
            prev_Nid = n_id - 1
            currVar = gvx.GetNodeVariables(n_id)
            prevVar = gvx.GetNodeVariables(prev_Nid)
            edge_obj = beta * cvxpy.norm(currVar['S'] - prevVar['S'],
                                         indexOfPenalty)
            gvx.AddEdge(n_id, prev_Nid, Objective=edge_obj)

        #Add rake nodes, edges
        gvx.AddNode(n_id + timestamps)
        gvx.AddEdge(n_id, n_id + timestamps, Objective=lamb * cvxpy.norm(S, 1))

    # need to write the parameters of ADMM


#    gvx.Solve()
    gvx.Solve(EpsAbs=epsAbs, EpsRel=epsRel, Verbose=verbose)
    # gvx.Solve(MaxIters = 700, Verbose = True, EpsAbs=eps_abs, EpsRel=eps_rel)
    # gvx.Solve( NumProcessors = 1, MaxIters = 3)

    # Extract the set of estimated theta
    thetaSet = []
    for nodeID in range(timestamps):
        val = gvx.GetNodeValue(nodeID, 'S')
        thetaEst = upper2FullTVGL(val, eps)
        thetaSet.append(thetaEst)
    return thetaSet, empCovSet, gvx.status, gvx
 def _generate_matrix_variables(self):
     self._true_cov_matrix = cv.semidefinite(self._n,
      name=u"true_cov_matrix")
     self._error_cov_matrix = cv.Variable(self._n, self._n,
      name=u"error_cov_matrix") 
示例#15
0
文件: sdp.py 项目: Aharobot/cvxpy
# # create data P
# P = cvxopt.matrix(np.matrix('4 1 3; 1 3.5 0.8; 3 0.8 1'))
# Z = cvx.Variable(3,3)

# objective = cvx.Minimize( sum(cvx.square(P - Z)) )
# constr = [cvx.constraints.semi_definite.SDP(P)]
# prob = cvx.Problem(objective, constr)
# prob.solve()

import cvxpy as cp
import numpy as np
import cvxopt

# create data P
P = cp.Parameter(3,3)
Z = cp.semidefinite(3)

objective = cp.Minimize( cp.lambda_max(P) - cp.lambda_min(P - Z) )
prob = cp.Problem(objective, 10*[Z >= 0])
P.value = cvxopt.matrix(np.matrix('4 1 3; 1 3.5 0.8; 3 0.8 1'))
prob.solve()



# [ 4,     1+2*j,     3-j       ; ...
#       1-2*j, 3.5,       0.8+2.3*j ; ...
#       3+j,   0.8-2.3*j, 4         ];
#
# % Construct and solve the model
# n = size( P, 1 );
# cvx_begin sdp