示例#1
0
def Get_spin_operators(spin):
    #Returns tuple of 3 spin operators and a unit matrix for given value of spin.
    s = int(spin.split('/')[0]) / int(spin.split('/')[1]) if (
        '/' in spin) else int(spin)
    d = int(2 * s + 1)

    return cytnx.physics.spin(s, 'x'), cytnx.physics.spin(
        s, 'y'), cytnx.physics.spin(s, 'z'), cytnx.eye(d).astype(
            cytnx.Type.ComplexDouble)
示例#2
0
def Create_loop_gas_operator(spin):
    """Returns loop gas (LG) operator Q_LG for spin=1/2 or spin=1 Kitaev model."""

    tau_tensor = cytnx.zeros(
        (2, 2, 2), dtype=cytnx.Type.ComplexDouble)  # tau_tensor_{i j k}

    if '/' in spin:
        tau_tensor[0, 0, 0] = -1j
    else:
        tau_tensor[0, 0, 0] = 1

    tau_tensor[0, 1, 1] = tau_tensor[1, 0, 1] = tau_tensor[1, 1, 0] = 1

    sx, sy, sz, one = Get_spin_operators(spin)
    d = one.shape()[0]

    Q_LG = cytnx.zeros((d, d, 2, 2, 2),
                       dtype=cytnx.Type.ComplexDouble)  # Q_LG_{s s' i j k}

    u_gamma = None

    if '/' in spin:
        u_gamma = list(
            map(lambda x: -1j * cytnx.linalg.ExpM(1j * np.pi * x),
                (sx, sy, sz)))
    else:
        u_gamma = list(
            map(lambda x: cytnx.linalg.ExpM(1j * np.pi * x), (sx, sy, sz)))

    for i in range(2):
        for j in range(2):
            for k in range(2):
                temp = cytnx.eye(d)
                if i == 0:
                    temp = cytnx.linalg.Matmul(temp, u_gamma[0])
                if j == 0:
                    temp = cytnx.linalg.Matmul(temp, u_gamma[1])
                if k == 0:
                    temp = cytnx.linalg.Matmul(temp, u_gamma[2])

                for s in range(d):
                    for sp in range(d):
                        Q_LG[s, sp, i, j,
                             k] = tau_tensor[i, j, k] * temp[s, sp]

    return Q_LG
示例#3
0
chi = 32
Nsites = 20
numsweeps = 4  # number of DMRG sweeps
maxit = 2  # iterations of Lanczos method
krydim = 4  # dimension of Krylov subspace

## Initialiaze MPO
##>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
d = 2
s = 0.5
sx = cytnx.physics.spin(0.5, 'x')
sy = cytnx.physics.spin(0.5, 'y')
sp = sx + 1j * sy
sm = sx - 1j * sy

eye = cytnx.eye(d)
M = cytnx.zeros([4, 4, d, d])
M[0, 0] = M[3, 3] = eye
M[0, 1] = M[2, 3] = 2**0.5 * sp.real()
M[0, 2] = M[1, 3] = 2**0.5 * sm.real()
M = cytnx.UniTensor(M, 0)

L0 = cytnx.UniTensor(cytnx.zeros([4, 1, 1]), 0)  #Left boundary
R0 = cytnx.UniTensor(cytnx.zeros([4, 1, 1]), 0)  #Right boundary
L0.get_block_()[0, 0, 0] = 1.
R0.get_block_()[3, 0, 0] = 1.

## Init MPS train
#
#   0-A[0]-2    2-A[1]-4    4-A[2]-6  ...  2k-A[k]-2k+2
#      |           |           |               |
示例#4
0
 OPTS_numsweeps = 6  # number of DMRG sweeps
 OPTS_dispon = 1  # level of output display
 OPTS_updateon = True  # level of output display
 OPTS_maxit = 2  # iterations of Lanczos method
 OPTS_krydim = 4  # dimension of Krylov subspace
 '''
 ########## Initialiaze MPO (quantum XX model) and random MPS ##########
 '''
 d = 2
 s = 0.5
 sx = cytnx.physics.spin(0.5, 'x')
 sy = cytnx.physics.spin(0.5, 'y')
 sz = cytnx.physics.spin(0.5, 'y')
 sp = sx + 1j * sy
 sm = sx - 1j * sy
 eye = cytnx.eye(d).astype(cytnx.Type.ComplexDouble)
 if model == 'XX':
     W = cytnx.zeros([4, 4, d, d]).astype(cytnx.Type.ComplexDouble)
     W[0, 0, :, :] = W[3, 3, :, :] = eye
     W[0, 1, :, :] = W[2, 3, :, :] = 2**0.5 * sp
     W[0, 2, :, :] = W[1, 3, :, :] = 2**0.5 * sm
     WL = cytnx.zeros([4, 1, 1]).astype(cytnx.Type.ComplexDouble)
     WR = cytnx.zeros([4, 1, 1]).astype(cytnx.Type.ComplexDouble)
     WL[0, 0, 0] = 1.
     WR[3, 0, 0] = 1.
 if model == 'Ising':
     W = cytnx.zeros([3, 3, d, d]).astype(cytnx.Type.ComplexDouble)
     W[0, 0, :, :] = W[2, 2, :, :] = eye
     W[0, 1, :, :] = sx * 2
     W[0, 2, :, :] = -1.0 * (sz * 2)  ## g
     W[1, 2, :, :] = sx * 2
示例#5
0
    out = A.clone()
    b = out.get_block_()
    for i in range(b.shape()[0]):
        if (b[i].item() < clip):
            b[i] = 0
        else:
            b[i] = 1. / b[i]

    return out


## create opeartor:
Sz = cy.physics.spin(0.5, 'z')
Sx = cy.physics.spin(0.5, 'x')
Sy = cy.physics.spin(0.5, 'y')
I = cy.eye(2)

H = cy.linalg.Kron(Sz, Sz) + cy.linalg.Kron(Sx, Sx) + cy.linalg.Kron(Sy, Sy)
H = H.real()  # since it's real ,let's truncate imag part.
H = cy.linalg.Kron(H, I)
H.reshape_(2, 2, 2, 2, 2, 2)
H = H + H.permute(0, 2, 1, 3, 5, 4) + H.permute(2, 0, 1, 5, 3, 4)

###################
tau = 1.0
D = 3
maxit = 1000

# Here, we explicitly seperate up/down
# which is the same in this model, but in general they could be different
Hup = H