示例#1
0
def train_recsys_rating(net, train_iter, test_iter, loss, trainer, num_epochs,
                        devices=d2l.try_all_gpus(), evaluator=None,
                        **kwargs):
    timer = d2l.Timer()
    animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0, 2],
                            legend=['train loss', 'test RMSE'])
    for epoch in tqdm.tqdm(range(num_epochs)):
        metric, l = d2l.Accumulator(3), 0.
        for i, values in enumerate(train_iter):
            timer.start()
            input_data = []
            values = values if isinstance(values, list) else [values]
            for v in values:
                input_data.append(gluon.utils.split_and_load(v, devices))
            train_feat = input_data[0:-1] if len(values) > 1 else input_data
            train_label = input_data[-1]
            with autograd.record():
                preds = [net(*t) for t in zip(*train_feat)]
                ls = [loss(p, s) for p, s in zip(preds, train_label)]
            [l.backward() for l in ls]
            l += sum([l.asnumpy() for l in ls]).mean() / len(devices)
            trainer.step(values[0].shape[0])
            metric.add(l, values[0].shape[0], values[0].size)
            timer.stop()
        if len(kwargs) > 0:  # It will be used in section AutoRec
            test_rmse = evaluator(net, test_iter, kwargs['inter_mat'],
                                  devices)
        else:
            test_rmse = evaluator(net, test_iter, devices)
        train_l = l / (i + 1)
        animator.add(epoch + 1, (train_l, test_rmse))
    print(f'train loss {metric[0] / metric[1]:.3f}, '
          f'test RMSE {test_rmse:.3f}')
    print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec '
          f'on {str(devices)}')
示例#2
0
def train_ch6(net, train_iter, test_iter, num_epochs, lr,
              device=d2l.try_gpu()):
    """Train a model with a GPU (defined in Chapter 6)."""
    net.initialize(force_reinit=True, ctx=device, init=init.Xavier())
    loss = gluon.loss.SoftmaxCrossEntropyLoss()
    trainer = gluon.Trainer(net.collect_params(),
                            'sgd', {'learning_rate': lr})
    animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
                            legend=['train loss', 'train acc', 'test acc'])
    timer, num_batches = d2l.Timer(), len(train_iter)
    for epoch in range(num_epochs):
        # Sum of training loss, sum of training accuracy, no. of examples
        metric = d2l.Accumulator(3)
        for i, (X, y) in enumerate(train_iter):
            timer.start()
            # Here is the major difference from `d2l.train_epoch_ch3`
            X, y = X.as_in_ctx(device), y.as_in_ctx(device)
            with autograd.record():
                y_hat = net(X)
                l = loss(y_hat, y)
            l.backward()
            trainer.step(X.shape[0])
            metric.add(l.sum(), d2l.accuracy(y_hat, y), X.shape[0])
            timer.stop()
            train_l = metric[0] / metric[2]
            train_acc = metric[1] / metric[2]
            if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
                animator.add(epoch + (i + 1) / num_batches,
                             (train_l, train_acc, None))
        test_acc = evaluate_accuracy_gpu(net, test_iter)
        animator.add(epoch + 1, (None, None, test_acc))
    print(f'loss {train_l:.3f}, train acc {train_acc:.3f}, '
          f'test acc {test_acc:.3f}')
    print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec '
          f'on {str(device)}')
示例#3
0
文件: 4-4.py 项目: hisashi-y/d2l-en
def evaluate_loss(net, data_iter, loss):  #@save
    """Evaluate the loss of a model on the given dataset."""
    metric = d2l.Accumulator(2)  # Sum of losses, no. of examples
    for X, y in data_iter:
        l = loss(net(X), y)
        metric.add(l.sum(), l.size)
    return metric[0] / metric[1]
示例#4
0
def train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period,
          lr_decay):
    trainer = gluon.Trainer(net.collect_params(), 'sgd',
                            {'learning_rate': lr, 'momentum': 0.9, 'wd': wd})
    num_batches, timer = len(train_iter), d2l.Timer()
    animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
                            legend=['train loss', 'train acc', 'valid acc'])
    for epoch in range(num_epochs):
        metric = d2l.Accumulator(3)
        if epoch > 0 and epoch % lr_period == 0:
            trainer.set_learning_rate(trainer.learning_rate * lr_decay)
        for i, (features, labels) in enumerate(train_iter):
            timer.start()
            l, acc = d2l.train_batch_ch13(
                net, features, labels.astype('float32'), loss, trainer,
                devices, d2l.split_batch)
            metric.add(l, acc, labels.shape[0])
            timer.stop()
            if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
                animator.add(epoch + (i + 1) / num_batches,
                             (metric[0] / metric[2], metric[1] / metric[2],
                              None))
        if valid_iter is not None:
            valid_acc = d2l.evaluate_accuracy_gpus(net, valid_iter,
                                                   d2l.split_batch)
            animator.add(epoch + 1, (None, None, valid_acc))
    if valid_iter is not None:
        print(f'loss {metric[0] / metric[2]:.3f}, '
              f'train acc {metric[1] / metric[2]:.3f}, '
              f'valid acc {valid_acc:.3f}')
    else:
        print(f'loss {metric[0] / metric[2]:.3f}, '
              f'train acc {metric[1] / metric[2]:.3f}')
    print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec '
          f'on {str(devices)}')
示例#5
0
def evaluate_accuracy_gpu(net, data_iter, device=None):  #@save
    """Compute the accuracy for a model on a dataset using a GPU."""
    if not device:  # Query the first device where the first parameter is on
        device = list(net.collect_params().values())[0].list_ctx()[0]
    # No. of correct predictions, no. of predictions
    metric = d2l.Accumulator(2)
    for X, y in data_iter:
        X, y = X.as_in_ctx(device), y.as_in_ctx(device)
        metric.add(d2l.accuracy(net(X), y), y.size)
    return metric[0] / metric[1]
示例#6
0
def train_ranking(net,
                  train_iter,
                  test_iter,
                  loss,
                  trainer,
                  test_seq_iter,
                  num_users,
                  num_items,
                  num_epochs,
                  devices,
                  evaluator,
                  candidates,
                  eval_step=1):
    timer, hit_rate, auc = d2l.Timer(), 0, 0
    animator = d2l.Animator(xlabel='epoch',
                            xlim=[1, num_epochs],
                            ylim=[0, 1],
                            legend=['test hit rate', 'test AUC'])
    for epoch in range(num_epochs):
        metric, l = d2l.Accumulator(3), 0.
        for i, values in enumerate(train_iter):
            # values: (batch_size, user_id, observered_item_id, unobserverd_item_id)
            input_data = []
            for v in values:
                # values: (user_id, observered_item_id, unobserverd_item_id)
                input_data.append(gluon.utils.split_and_load(v, devices))
            with autograd.record():
                p_pos = [net(*t) for t in zip(*input_data[0:-1])]
                p_neg = [
                    net(*t) for t in zip(*input_data[0:-2], input_data[-1])
                ]
                ls = [loss(p, n) for p, n in zip(p_pos, p_neg)]
            [l.backward(retain_graph=False) for l in ls]
            l += sum([l.asnumpy() for l in ls]).mean() / len(devices)
            trainer.step(values[0].shape[0])
            metric.add(l, values[0].shape[0], values[0].size)
            timer.stop()
        with autograd.predict_mode():
            if (epoch + 1) % eval_step == 0:
                hit_rate, auc = evaluator(net, test_iter, test_seq_iter,
                                          candidates, num_users, num_items,
                                          devices)
                animator.add(epoch + 1, (hit_rate, auc))
    print(f'train loss {metric[0] / metric[1]:.3f}, '
          f'test hit rate {float(hit_rate):.3f}, test AUC {float(auc):.3f}')
    print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec '
          f'on {str(devices)}')
示例#7
0
def train_bert(train_iter, net, loss, vocab_size, ctx, log_interval,
               num_steps):
    trainer = gluon.Trainer(net.collect_params(), 'adam',
                            {'learning_rate': 1e-3})
    step, timer = 0, d2l.Timer()
    animator = d2l.Animator(xlabel='step',
                            ylabel='loss',
                            xlim=[1, num_steps],
                            legend=['mlm', 'nsp'])
    # Sum of masked language modeling losses, sum of next sentence prediction
    # losses, no. of sentence pairs, count
    metric = d2l.Accumulator(4)
    num_steps_reached = False
    while step < num_steps and not num_steps_reached:
        for batch in train_iter:
            (tokens_X_shards, segments_X_shards, valid_lens_x_shards,
             pred_positions_X_shards, mlm_weights_X_shards, mlm_Y_shards,
             nsp_y_shards) = [
                 gluon.utils.split_and_load(elem, ctx, even_split=False)
                 for elem in batch
             ]
            timer.start()
            with autograd.record():
                mlm_ls, nsp_ls, ls = _get_batch_loss_bert(
                    net, loss, vocab_size, tokens_X_shards, segments_X_shards,
                    valid_lens_x_shards, pred_positions_X_shards,
                    mlm_weights_X_shards, mlm_Y_shards, nsp_y_shards)
            for l in ls:
                l.backward()
            trainer.step(1)
            mlm_l_mean = sum([float(l) for l in mlm_ls]) / len(mlm_ls)
            nsp_l_mean = sum([float(l) for l in nsp_ls]) / len(nsp_ls)
            metric.add(mlm_l_mean, nsp_l_mean, batch[0].shape[0], 1)
            timer.stop()
            if (step + 1) % log_interval == 0:
                animator.add(step + 1,
                             (metric[0] / metric[3], metric[1] / metric[3]))
            step += 1
            if step == num_steps:
                num_steps_reached = True
                break

    print(f'MLM loss {metric[0] / metric[3]:.3f}, '
          f'NSP loss {metric[1] / metric[3]:.3f}')
    print(f'{metric[2] / timer.sum():.1f} sentence pairs/sec on {str(ctx)}')
def train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period,
          lr_decay):
    # Only train the small custom output network
    trainer = gluon.Trainer(net.output_new.collect_params(), 'sgd',
                            {'learning_rate': lr, 'momentum': 0.9, 'wd': wd})
    num_batches, timer = len(train_iter), d2l.Timer()
    animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
                            legend=['train loss', 'valid loss'])
    for epoch in range(num_epochs):
        print('Epoch: '+str(epoch+1))
        metric = d2l.Accumulator(2)
        if epoch > 0 and epoch % lr_period == 0:
            trainer.set_learning_rate(trainer.learning_rate * lr_decay)
        for i, (features, labels) in enumerate(train_iter):
            timer.start()
            X_shards, y_shards = d2l.split_batch(features, labels, devices)
            output_features = [net.features(X_shard) for X_shard in X_shards]
            with autograd.record():
                outputs = [net.output_new(feature)
                           for feature in output_features]
                ls = [loss(output, y_shard).sum() for output, y_shard
                      in zip(outputs, y_shards)]
            for l in ls:
                l.backward()
            trainer.step(batch_size)
            metric.add(sum([float(l.sum()) for l in ls]), labels.shape[0])
            timer.stop()
            if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
                animator.add(epoch + (i + 1) / num_batches,
                             (metric[0] / metric[1], None))
        if valid_iter is not None:
            valid_loss = evaluate_loss(valid_iter, net, devices)
            animator.add(epoch + 1, (None, valid_loss))
    if valid_iter is not None:
        print(f'train loss {metric[0] / metric[1]:.3f}, '
              f'valid loss {valid_loss:.3f}')
    else:
        print(f'train loss {metric[0] / metric[1]:.3f}')
    print(f'{metric[1] * num_epochs / timer.sum():.1f} examples/sec '
          f'on {str(devices)}')