示例#1
0
    def calibration_data(self, idx):
        # TODO: add motion compensation, ref: https://github.com/waymo-research/waymo-open-dataset/issues/146
        # https://github.com/waymo-research/waymo-open-dataset/issues/79
        if isinstance(idx, int):
            seq_id, _ = self._locate_frame(idx)
        else:
            seq_id, _ = idx
        assert not self._return_file_path, "The calibration data is not in a single file!"

        calib_params = TransformSet("vehicle")

        # load json files
        fname_cams = "context/calib_cams.json"
        fname_lidars = "context/calib_lidars.json"
        if self.inzip:
            with PatchedZipFile(self.base_path / (seq_id + ".zip"),
                                to_extract=[fname_cams, fname_lidars]) as ar:
                calib_cams = json.loads(ar.read(fname_cams))
                calib_lidars = json.loads(ar.read(fname_lidars))
        else:
            with (self.base_path / seq_id / fname_cams).open() as fin:
                calib_cams = json.load(fin)
            with (self.base_path / seq_id / fname_lidars).open() as fin:
                calib_lidars = json.load(fin)

        # parse camera calibration
        for frame, calib in calib_cams.items():
            frame = "camera_" + frame
            (fu, fv, cu,
             cv), distort = calib['intrinsic'][:4], calib['intrinsic'][4:]
            transform = np.array(calib['extrinsic']).reshape(4, 4)
            size = (calib['width'], calib['height'])
            calib_params.set_intrinsic_pinhole(frame,
                                               size,
                                               cu,
                                               cv,
                                               fu,
                                               fv,
                                               distort_coeffs=distort)
            calib_params.set_extrinsic(transform, frame_from=frame)

        # parse lidar calibration
        for frame, calib in calib_lidars.items():
            frame = "lidar_" + frame
            calib_params.set_intrinsic_lidar(frame)
            transform = np.array(calib['extrinsic']).reshape(4, 4)
            calib_params.set_extrinsic(transform, frame_from=frame)

        return calib_params
示例#2
0
def visualize_detections(builder: XVIZBuilder,
                         visualizer_frame: str,
                         targets: Target3DArray,
                         calib: TransformSet,
                         stream_prefix: str,
                         id_prefix="",
                         tags=None,
                         text_offset=None):
    '''
    Add detection results to xviz builder
    '''
    # change frame to the same
    if targets.frame != visualizer_frame:
        targets = calib.transform_objects(targets, frame_to=visualizer_frame)

    stream_prefix = stream_prefix.rstrip("/")

    for box in targets:
        vertices = box.corners[[0, 1, 3, 2, 0]]
        builder.primitive(stream_prefix + "/objects")\
            .polygon(vertices.tolist())\
            .id(box.tid64)\
            .style({"height": box.dimension[2]})\
            .classes([box.tag.mapping(t).name for t in box.tag.labels])

        builder.primitive(stream_prefix + "/label")\
            .text("#" + box.tid64)\
            .position(box.position if text_offset is None else box.position + text_offset)

        builder.primitive(stream_prefix + "/tracking_point")\
            .circle(box.position, 0.2)\
            .id(box.tid64)
示例#3
0
def visualize_detections_bev(ax: axes.Axes,
                             visualizer_frame: str,
                             targets: Target3DArray,
                             calib: TransformSet,
                             box_color=(0, 1, 0),
                             thickness=2,
                             tags=None):

    # change frame to the same
    if targets.frame != visualizer_frame:
        targets = calib.transform_objects(targets, frame_to=visualizer_frame)

    for target in targets.filter_tag(tags):
        # draw vehicle frames
        points = target.corners
        pairs = [(0, 1), (2, 3), (0, 2), (1, 3)]
        for i, j in pairs:
            ax.add_line(
                lines.Line2D((points[i, 0], points[j, 0]),
                             (points[i, 1], points[j, 1]),
                             c=box_color,
                             lw=thickness))

        # draw velocity
        if isinstance(target, TrackingTarget3D):
            pstart = target.position[:2]
            pend = target.position[:2] + target.velocity[:2]
            ax.add_line(
                lines.Line2D((pstart[0], pend[0]), (pstart[1], pend[1]),
                             c=box_color,
                             lw=thickness))
示例#4
0
文件: loader.py 项目: cmpute/d3d
    def calibration_data(self, idx):
        seq_id, _ = idx
        assert not self._return_file_path, "The calibration is not in a single file!"

        calib_params = TransformSet("ego")
        calib_fname = "scene/calib.json"
        if self.inzip:
            with PatchedZipFile(self.base_path / (seq_id + ".zip"),
                                to_extract=calib_fname) as ar:
                calib_data = json.loads(ar.read(calib_fname))
        else:
            with Path(self.base_path, seq_id, calib_fname).open() as fin:
                calib_data = json.load(fin)

        for frame, calib in calib_data.items():
            # set intrinsics
            if frame.startswith('cam'):
                image_size = (1600, 900
                              )  # currently all the images have the same size
                projection = np.array(calib['camera_intrinsic'])
                calib_params.set_intrinsic_camera(frame,
                                                  projection,
                                                  image_size,
                                                  rotate=False)
            elif frame.startswith('lidar'):
                calib_params.set_intrinsic_lidar(frame)
            elif frame.startswith('radar'):
                calib_params.set_intrinsic_radar(frame)
            else:
                raise ValueError("Unrecognized frame name.")

            # set extrinsics
            r = Rotation.from_quat(calib['rotation'][1:] +
                                   [calib['rotation'][0]])
            t = np.array(calib['translation'])
            extri = np.eye(4)
            extri[:3, :3] = r.as_matrix()
            extri[:3, 3] = t
            calib_params.set_extrinsic(extri, frame_from=frame)

        return calib_params
示例#5
0
    def _load_calib(self, basepath, uidx, raw=False):
        # load the calibration file
        fname = Path(self.phase_path, 'calib', '%06d.txt' % uidx)
        filedata = utils.load_calib_file(basepath, fname)

        if raw:
            return filedata

        # load image size, which could take additional time
        if uidx not in self._image_size_cache:
            self.camera_data((uidx, ))  # fill image size cache
        image_size = self._image_size_cache[uidx]

        # load matrics
        data = TransformSet("velo")
        rect = filedata['R0_rect'].reshape(3, 3)
        velo_to_cam = filedata['Tr_velo_to_cam'].reshape(3, 4)
        for i in range(4):
            P = filedata['P%d' % i].reshape(3, 4)
            intri, offset = P[:, :3], P[:, 3]
            projection = intri.dot(rect)
            offset_cartesian = np.linalg.inv(projection).dot(offset)
            extri = np.vstack([velo_to_cam, np.array([0, 0, 0, 1])])
            extri[:3, 3] += offset_cartesian

            frame = "cam%d" % i
            data.set_intrinsic_camera(frame,
                                      projection,
                                      image_size,
                                      rotate=False)
            data.set_extrinsic(extri, frame_to=frame)

        data.set_intrinsic_general("imu")
        data.set_extrinsic(filedata['Tr_imu_to_velo'].reshape(3, 4),
                           frame_from="imu")

        return data
示例#6
0
def visualize_detections(ax: axes.Axes,
                         image_frame: str,
                         targets: Target3DArray,
                         calib: TransformSet,
                         box_color=(0, 1, 0),
                         thickness=2,
                         tags=None):
    '''
    Draw detected object on matplotlib canvas
    '''
    for target in targets.filter_tag(tags):
        # add points for direction indicator
        points = target.corners
        indicator = np.array(
            [[0, 0, -target.dimension[2] / 2],
             [target.dimension[0] / 2, 0,
              -target.dimension[2] / 2]]).dot(target.orientation.as_matrix().T)
        points = np.vstack([points, target.position + indicator])

        # project points
        uv, mask, dmask = calib.project_points_to_camera(
            points,
            frame_to=image_frame,
            frame_from=targets.frame,
            remove_outlier=False,
            return_dmask=True)
        if len(uv[mask]) < 1:
            continue  # ignore boxes that is outside the image
        uv = uv.astype(int)

        # draw box
        pairs = [(0, 1), (2, 3), (4, 5), (6, 7), (0, 4), (1, 5), (2, 6),
                 (3, 7), (0, 2), (1, 3), (4, 6), (5, 7)]
        inlier = [i in mask for i in range(len(uv))]
        for i, j in pairs:
            if not inlier[i] and not inlier[j]:
                continue
            if i not in dmask or j not in dmask:
                continue  # only calculate for points ahead
            ax.add_line(
                lines.Line2D((uv[i, 0], uv[j, 0]), (uv[i, 1], uv[j, 1]),
                             c=box_color,
                             lw=thickness))
        # draw direction
        ax.add_line(
            lines.Line2D((uv[-2, 0], uv[-1, 0]), (uv[-2, 1], uv[-1, 1]),
                         c=box_color,
                         lw=thickness))
示例#7
0
    def test_point_cloud_temporal_fusion(self):
        # TODO: this fail for nuscenes and waymo
        idx = selection or random.randint(0, len(self.tloader))
        lidar = self.tloader.VALID_LIDAR_NAMES[0]

        # load data
        clouds = self.tloader.lidar_data(idx, lidar)
        poses = self.tloader.pose(idx)
        targets = self.tloader.annotation_3dobject(idx)
        calib = self.oloader.calibration_data(idx)

        cloud1, cloud2 = clouds[0][:, :4], clouds[-1][:, :4]
        pose1, pose2 = poses[0], poses[-1]
        targets1, targets2 = targets[0], targets[-1]
        print("START", pose1)
        print("END", pose2)

        # create transforms
        tf = TransformSet("global")
        fname1, fname2 = "pose1", "pose2"
        tf.set_intrinsic_map_pin(fname1)
        tf.set_intrinsic_map_pin(fname2)
        tf.set_extrinsic(pose1.h**o(), fname1)
        tf.set_extrinsic(pose2.h**o(), fname2)

        # make coordinate unified in frame
        targets1 = calib.transform_objects(targets1, lidar)
        targets2 = calib.transform_objects(targets2, lidar)
        targets1.frame = fname1
        targets2.frame = fname2
        print("HOMO1", pose1.h**o())
        print("HOMO2", pose2.h**o())
        print(tf.get_extrinsic(fname1, fname2))

        # visualize both point cloud in frame2
        visualizer = pcl.Visualizer()
        visualizer.addPointCloud(pcl.create_xyzi(
            tf.transform_points(cloud1, frame_from=fname1, frame_to=fname2)),
                                 field="intensity",
                                 id="cloud1")
        visualizer.addPointCloud(pcl.create_xyzi(cloud2),
                                 field="intensity",
                                 id="cloud2")
        pcl_vis(visualizer,
                fname2,
                targets1,
                tf,
                box_color=(1, 1, 0),
                id_prefix="frame1")
        pcl_vis(visualizer,
                fname2,
                targets2,
                tf,
                box_color=(0, 1, 1),
                id_prefix="frame2")
        visualizer.setRepresentationToWireframeForAllActors()
        visualizer.addCoordinateSystem()
        visualizer.setWindowName(
            "Please check whether the gt boxes are aligned!")
        # visualizer.spinOnce(time=5000)
        # visualizer.close()
        visualizer.spin()
示例#8
0
    def _preload_calib(self):
        # load data
        import yaml
        if self.inzip:
            source = ZipFile(self.base_path / "calibration.zip")
        else:
            source = self.base_path

        cam2pose = load_calib_file(source, "calibration/calib_cam_to_pose.txt")
        perspective = load_calib_file(source, "calibration/perspective.txt")
        if self.inzip:
            cam2velo = np.fromstring(
                source.read("calibration/calib_cam_to_velo.txt"), sep=" ")
            sick2velo = np.fromstring(
                source.read("calibration/calib_sick_to_velo.txt"), sep=" ")
            intri2 = yaml.safe_load(
                source.read("calibration/image_02.yaml")[10:])  # skip header
            intri3 = yaml.safe_load(
                source.read("calibration/image_03.yaml")[10:])
        else:
            cam2velo = np.loadtxt(source / "calibration/calib_cam_to_velo.txt")
            sick2velo = np.loadtxt(source /
                                   "calibration/calib_sick_to_velo.txt")
            intri2 = yaml.safe_load(
                (source / "calibration/image_02.yaml").read_text()[10:])
            intri3 = yaml.safe_load(
                (source / "calibration/image_03.yaml").read_text()[10:])

        if self.inzip:
            source.close()

        # parse calibration
        calib = TransformSet("pose")
        calib.set_intrinsic_lidar("velo")
        calib.set_intrinsic_lidar("sick")
        calib.set_intrinsic_camera("cam1",
                                   perspective["P_rect_00"].reshape(3, 4),
                                   perspective["S_rect_00"],
                                   rotate=False)
        calib.set_intrinsic_camera("cam2",
                                   perspective["P_rect_01"].reshape(3, 4),
                                   perspective["S_rect_01"],
                                   rotate=False)

        def parse_mei_camera(intri):
            size = [intri['image_width'], intri['image_height']]
            distorts = intri['distortion_parameters']
            distorts = np.array([
                distorts['k1'], distorts['k2'], distorts['p1'], distorts['p2']
            ])
            projection = intri['projection_parameters']
            pmatrix = np.diag([projection["gamma1"], projection["gamma2"], 1])
            pmatrix[0, 2] = projection["u0"]
            pmatrix[1, 2] = projection["v0"]
            return size, pmatrix, distorts, intri['mirror_parameters']['xi']

        S, P, D, xi = parse_mei_camera(intri2)
        calib.set_intrinsic_camera("cam3",
                                   P,
                                   S,
                                   distort_coeffs=D,
                                   intri_matrix=P,
                                   mirror_coeff=xi)
        S, P, D, xi = parse_mei_camera(intri3)
        calib.set_intrinsic_camera("cam4",
                                   P,
                                   S,
                                   distort_coeffs=D,
                                   intri_matrix=P,
                                   mirror_coeff=xi)

        calib.set_extrinsic(cam2pose["image_00"].reshape(3, 4),
                            frame_from="cam1")
        calib.set_extrinsic(cam2pose["image_01"].reshape(3, 4),
                            frame_from="cam2")
        calib.set_extrinsic(cam2pose["image_02"].reshape(3, 4),
                            frame_from="cam3")
        calib.set_extrinsic(cam2pose["image_03"].reshape(3, 4),
                            frame_from="cam4")
        calib.set_extrinsic(cam2velo.reshape(3, 4),
                            frame_from="cam1",
                            frame_to="velo")
        calib.set_extrinsic(sick2velo.reshape(3, 4),
                            frame_from="sick",
                            frame_to="velo")
        self._calibration = calib
示例#9
0
文件: raw.py 项目: cmpute/d3d
    def _load_calib(self, seq, raw=False):
        # load the calibration file data
        self._preload_calib(seq)
        date = self._get_date(seq)
        filedata = self._calib_cache[date]
        if raw:
            return filedata

        # load matrics
        data = TransformSet("velo")
        velo_to_cam = np.empty((3, 4))
        velo_to_cam[:3, :3] = filedata['velo_to_cam']['R'].reshape(3, 3)
        velo_to_cam[:3, 3] = filedata['velo_to_cam']['T']
        for i in range(4):
            S = filedata['cam_to_cam']['S_rect_%02d' % i].tolist()
            # TODO: here we have different R_rect's, what's the difference of them against the one used in object detection
            R = filedata['cam_to_cam']['R_rect_%02d' % i].reshape(3, 3)
            P = filedata['cam_to_cam']['P_rect_%02d' % i].reshape(3, 4)
            intri, offset = P[:, :3], P[:, 3]
            projection = intri.dot(R)
            offset_cartesian = np.linalg.inv(projection).dot(offset)
            extri = np.vstack([velo_to_cam, np.array([0, 0, 0, 1])])
            extri[:3, 3] += offset_cartesian

            frame = "cam%d" % i
            data.set_intrinsic_camera(frame, projection, S, rotate=False)
            data.set_extrinsic(extri, frame_to=frame)

        imu_to_velo = np.empty((3, 4))
        imu_to_velo[:3, :3] = filedata['imu_to_velo']['R'].reshape(3, 3)
        imu_to_velo[:3, 3] = filedata['imu_to_velo']['T']
        data.set_intrinsic_general("imu")
        data.set_extrinsic(imu_to_velo, frame_from="imu")

        # add position of vehicle bottom center and rear axis center
        bc_rt = np.array([[1, 0, 0, -0.27], [0, 1, 0, 0], [0, 0, 1, 1.73]],
                         dtype='f4')
        data.set_intrinsic_general("bottom_center")
        data.set_extrinsic(bc_rt, frame_to="bottom_center")

        rc_rt = np.array([[1, 0, 0, -0.805], [0, 1, 0, 0], [0, 0, 1, 0.30]])
        data.set_intrinsic_general("rear_center")
        data.set_extrinsic(rc_rt,
                           frame_from="bottom_center",
                           frame_to="rear_center")

        return data
示例#10
0
def visualize_detections(visualizer: Visualizer,
                         visualizer_frame: str,
                         targets: Target3DArray,
                         calib: TransformSet,
                         text_scale=0.8,
                         box_color=(1, 1, 1),
                         text_color=(1, 0.8, 1),
                         id_prefix="",
                         tags=None,
                         text_offset=None,
                         viewport=0):
    '''
    Visualize detection targets in PCL Visualizer.

    :param visualizer: The pcl.Visualizer instance used for visualization
    :param visualizer_frame: The frame that visualizer is in
    :param targets: Object array to be visualized
    :param calib: TransformSet object storing calibration information. This is mandatory if the
        targets are in different frames
    :param text_scale: The scale for text tags. Set to 0 or negative if you want to suppress text
        visualization
    :param box_color: Specifying the color of bounding boxes.
        If it's a tuple, then it's assumed that it contains three RGB values in range 0-1.
        If it's a str or matplotlib colormap object, then the color comes from applying colormap to the object id.
    :param text_color: Specifying the color of text tags.
    :param id_prefix: Prefix of actor ids in PCL Visualizer, essential when this function is called multiple times
    :param text_offset: Relative position of text tags with regard to the box center
    :param viewport: Viewport for objects to be added. This is a PCL related feature
    '''
    if not _pcl_available:
        raise RuntimeError(
            "pcl is not available, please check the installation of package pcl.py"
        )

    if id_prefix != "" and not id_prefix.endswith("/"):
        id_prefix = id_prefix + "/"

    # change frame to the same
    if targets.frame != visualizer_frame:
        targets = calib.transform_objects(targets, frame_to=visualizer_frame)

    # convert colormaps
    if isinstance(box_color, str):
        box_color = cm.get_cmap(box_color)
    if isinstance(text_color, str):
        text_color = cm.get_cmap(text_color)

    for i, target in enumerate(targets.filter_tag(tags)):
        tid = target.tid or i

        # convert coordinate
        orientation = target.orientation.as_quat()
        orientation = [orientation[3]
                       ] + orientation[:3].tolist()  # To PCL quaternion
        lx, ly, lz = target.dimension

        cube_id = (id_prefix + "target%d") % i
        color = box_color(tid % 256) if isinstance(box_color,
                                                   Colormap) else box_color
        alpha = color[3] if len(color) > 3 else 0.8
        visualizer.addCube(target.position,
                           orientation,
                           lx,
                           ly,
                           lz,
                           id=cube_id,
                           viewport=viewport)
        visualizer.setShapeRenderingProperties(pv.RenderingProperties.Opacity,
                                               alpha,
                                               id=cube_id)
        visualizer.setShapeRenderingProperties(pv.RenderingProperties.Color,
                                               color[:3],
                                               id=cube_id)

        # draw tag
        if text_scale >= 0:
            text_id = (id_prefix + "target%d/tag") % i
            if target.tid:
                disp_text = "%s: %s" % (target.tid64, target.tag_top.name)
            else:
                disp_text = "#%d: %s" % (i, target.tag_top.name)
            aux_text = []
            if target.tag_top_score < 1:
                aux_text.append("%.2f" % target.tag_top_score)
            position_var = np.power(np.linalg.det(target.position_var),
                                    1 / 6)  # display standard deviation
            if position_var > 0:
                aux_text.append("%.2f" % position_var)
            dimension_var = np.power(np.linalg.det(target.dimension_var),
                                     1 / 6)
            if dimension_var > 0:
                aux_text.append("%.2f" % dimension_var)
            if target.orientation_var > 0:
                aux_text.append("%.2f" % target.orientation_var)
            if len(aux_text) > 0:
                disp_text += " (" + ", ".join(aux_text) + ")"

            disp_pos = np.copy(target.position)
            disp_pos[2] += lz / 2  # lift the text out of box
            if text_offset is not None:  # apply offset
                disp_pos += text_offset

            color = text_color(tid % 256) if isinstance(
                text_color, Colormap) else text_color
            visualizer.addText3D(disp_text,
                                 list(disp_pos),
                                 text_scale=text_scale,
                                 color=text_color[:3],
                                 id=text_id,
                                 viewport=viewport)

        # draw orientation
        arrow_id = (id_prefix + "target%d/direction") % i
        dir_x, dir_y, dir_z = np.hsplit(target.orientation.as_matrix(), 3)
        off_x, off_y, off_z = dir_x * lx / 2, dir_y * ly / 2, dir_z * lz / 2
        off_x, off_y, off_z = off_x.flatten(), off_y.flatten(), off_z.flatten()
        pos_bottom = target.position - off_z
        visualizer.addLine(pos_bottom - off_y - off_x,
                           pos_bottom + off_x,
                           id=arrow_id + "_1",
                           viewport=viewport)
        visualizer.addLine(pos_bottom + off_y - off_x,
                           pos_bottom + off_x,
                           id=arrow_id + "_2",
                           viewport=viewport)

        # draw velocity
        if isinstance(target, TrackingTarget3D):
            arrow_id = (id_prefix + "target%d/velocity") % i
            pstart = target.position
            pend = target.position + target.velocity
            visualizer.addLine(pstart,
                               pend,
                               color=(0.5, 0.5, 1),
                               id=arrow_id,
                               viewport=viewport)