def estimate_pvalue_SI(underlying: Network, theta: float, outcome: dict, initials: set, immunes: set = set(), tmax=1000.0, dt=1, n_iterations=10000): est_p = Simulator.estimate_SI(underlying=underlying, theta=theta, outcome=outcome, initials=initials, tmax=tmax, dt=dt) n_less = 0 for i in range(n_iterations): result = Simulator.simulate_SI(underlying=underlying, theta=theta, infected=initials, immunes=immunes, tmax=tmax, dt=dt) if result['p'] <= est_p: n_less += 1 return n_less / n_iterations
def test_SI_relic(niter=10, show=False): nm = test_network_manager() result = Simulator.simulate_SI_relic(underlying=nm.network, theta=0.05, relic=0.01, infected={1}, tmax=300, dt=0.01) result['outcome'][1] = 0.0 est.set_diffusion_data(nm.get_dos_filepath(), counters=None, outcome=result['outcome']) t0 = random.random() + 1e-12 r0 = random.random() + 1e-12 res = est.llmax_for_diffusion_SI_relic(t0, r0) print('Max: ' + str(res)) print(result['outcome']) if show: thetas = np.arange(1e-12, 0.1, 0.001) relics = np.arange(1e-12, 0.1, 0.001) func = generate_ll_func_SI_relic(nm, result['outcome'], thetas, relics) pl_rend.show_likelyhood_heatmap2D(thetas, relics, func, [0.05, 0.01], [res['theta'], res['relic']], xlabel='theta', ylabel='relic', exp=True)
def test_SI(ntw: Network, true_theta: float): result = Simulator.simulate_SI(underlying=ntw, theta=true_theta, infected={1}, tmax=300, dt=1) print(result) th = 0.0 est_th = th best_pest = 0 ml_pval = 0 thetas = [] ps = [] total_pest = 0 while th <= 1.0: pest = Simulator.estimate_SI(underlying=ntw, outcome=result['outcome'], theta=th, initials={1}, tmax=300, dt=1) # print(str(th) + ' ' + str(pest)) if pest > best_pest: best_pest = pest est_th = th thetas.append(th) ps.append(pest) total_pest += pest th += 0.01 pval = de.estimate_pvalue_SI(underlying=ntw, outcome=result['outcome'], theta=est_th, initials={1}, tmax=300, dt=1, n_iterations=1000) print('True theta: ' + str(true_theta)) print('Max liklehood estimation: ' + str(est_th) + ' p-val ' + str(pval)) psnorm = stat.normalize_series(ps) confide = stat.confidential_from_p_series(psnorm, 0.95) print('0.95 confidential interval: (' + str(thetas[confide[0]]) + ', ' + str(thetas[confide[1]]) + ')') pyplot.plot(thetas, psnorm) pyplot.show()
def test_ICM_libtest(netwrk: Network, true_theta: float, true_relic: float = .0, single_point=False): netman = NetworkManager(net=netwrk, name='temp', base_dir='D:/BigData/Charity/Cascades/') netman.save_to_file() #result = Simulator.simulate_ICM(underlying=netwrk, theta=true_theta, relic=true_relic, infected={1}) outcomes = [] otimes = [] for i in range(50): result = Simulator.simulate_SI_decay_confirm_relicexp_hetero( underlying=netwrk, theta=.1, relic=.0, confirm=.0, decay=.1, infected={1}, tmax=300, dt=0.05) result['outcome'][1] = .0 print(result) outcomes.append(result['outcome']) otimes.append(300) est.set_diffusion_data_ensemble_newlib(netman.get_dos_filepath(), outcomes=outcomes, observe_times=otimes, echo=False) est_th = .0 best_pest = -99999999999 total_pest = 0 thetas = np.arange(0.01, 1.0, 0.001) ps = np.zeros(len(thetas)) for i in range(len(thetas)): th = thetas[i] pest = math.exp(-est.loglikelyhood_ICM([th, .0])) print(pest) if pest > best_pest: best_pest = pest est_th = th ps[i] = pest total_pest += pest print('True theta: ' + str(true_theta)) print('Max liklehood estimation: ' + str(est_th) + ' ' + str(-0.1 * math.log(1 - est_th))) psnorm = stat.normalize_series(list(ps)) confide = stat.confidential_from_p_series(psnorm, 0.95) print('0.95 confidential interval: (' + str(thetas[confide[0]]) + ', ' + str(thetas[confide[1]]) + ')') pyplot.plot(thetas, psnorm) pyplot.show()
def test_convergence(niter=10): nm = test_network_manager() result = Simulator.simulate_SI_relic(underlying=nm.network, theta=0.1, relic=0.005, infected={1}, tmax=300, dt=0.01) result['outcome'][1] = 0.0 est.set_diffusion_data(nm.get_dos_filepath(), counters=None, outcome=result['outcome']) for i in range(niter): t0 = random.random() + 1e-12 r0 = random.random() + 1e-12 print('Max: ' + str(est.llmax_for_diffusion_SI_relic(t0, r0)))
def simulate_diffusion_cascades_zashitim_taigu(n_cascades, theta, rho, delta): casman = CascadesManager(name='Zashitim_taigu_-164443025_8726_8021_6846', base_dir='D:/BigData/Charity/Cascades/') casman.load_from_file() cascade = casman.get_cascade_by_id(6846) print(cascade.get_minimum_delay()) print(max(cascade.get_outcome(normalization_factor=3600).values())) est.set_alpha_for_node(-164443025, 25) outcome = Simulator.simulate_SI_decay_confirm_relicexp_hetero( casman.underlying_net.network, theta, delta, .0, rho, infected={-164443025}, tmax=2500., dt=30, echo=True) print(outcome)
def test_SI_relic_decay_libtest(ntw: Network, true_theta: float, true_relic: float, newlib=False, single_point=False): #test_outcome = {5: 11.89999999999979, 6: 36.75000000000126, 20: 39.49000000000071, 1: 39.65000000000068, 3: 40.0600000000006, 26: 40.840000000000444, 11: 41.31000000000035, 2: 43.799999999999855, 13: 44.299999999999756, 22: 45.64999999999949, 25: 46.29999999999936, 12: 46.33999999999935, 16: 47.43999999999913, 9: 49.53999999999871, 7: 49.68999999999868, 23: 50.679999999998486, 27: 52.849999999998055, 30: 53.77999999999787, 29: 54.22999999999778, 24: 54.499999999997726, 21: 55.03999999999762, 15: 58.159999999997, 17: 58.56999999999692, 8: 62.05999999999622, 14: 66.41999999999707, 4: 79.06000000000354, 10: 87.63000000000793, 19: 110.38000000001956, 31: 146.84000000001143, 28: 159.5199999999999, 18: 0.0} netman = NetworkManager(net=netwrk, name='temp', base_dir='D:/BigData/Charity/Cascades/') netman.save_to_file() result = Simulator.simulate_SI_decay_confirm_relicexp_hetero( underlying=netwrk, theta=true_theta, relic=true_relic, confirm=.0, decay=.0, infected={1}, tmax=300, dt=0.01) result['outcome'][1] = .0 #result['outcome'] = test_outcome #OVERWRITE TEST # result = Simulator.simulate_SI_relic(underlying=ntw, theta=true_theta, relic=true_relic, # infected={1}, tmax=300, dt=0.01) if (newlib): est.set_diffusion_data_newlib(netman.get_dos_filepath(), outcome=result['outcome'], observe_time=300, echo=False) else: est.set_diffusion_data(netman.get_dos_filepath(), counters={}, outcome=result['outcome']) est_th_py = .0 est_dc_py = .0 est_th_c = .0 est_dc_c = .0 best_pest_py = 0 best_pest_c = 0 ml_pval = 0 total_pest = 0 th = 0.0 thetas = np.arange(0.0001, 0.05, 0.0005) relics = np.arange(0.0001, 0.01, 0.0001) ps_py = np.zeros((len(thetas), len(relics))) ps_c = np.zeros((len(thetas), len(relics))) i = 0 if (single_point): print( math.exp( Simulator.estimate_SI_relic_continuous( underlying=ntw, outcome=result['outcome'], theta=true_theta, relic=true_relic, initials={1}, tmax=300, echo=False))) if (newlib): print( math.exp(-est.loglikelyhood_SI_relic_newlib( [true_theta, true_relic]))) else: print( math.exp( -est.loglikelyhood_SI_relic([true_theta, true_relic]))) else: for th in thetas: dc = 0.0 j = 0 for dc in relics: pest_py = math.exp( Simulator.estimate_SI_relic_continuous( underlying=ntw, outcome=result['outcome'], theta=th, relic=dc, initials={1}, tmax=300)) if (newlib): pest_c = math.exp( -est.loglikelyhood_SI_relic_newlib([th, dc])) else: pest_c = math.exp(-est.loglikelyhood_SI_relic([th, dc])) # print(str(th) + ' ' + str(pest)) if pest_py > best_pest_py: best_pest_py = pest_py est_th_py = th est_dc_py = dc if pest_c > best_pest_c: best_pest_c = pest_c est_th_c = th est_dc_c = dc ps_py[i][j] = pest_py ps_c[i][j] = pest_c j += 1 i += 1 print('True theta: ' + str(true_theta)) print('Max liklehood estimation Py: ' + str(est_th_py)) print('Max liklehood estimation C: ' + str(est_th_c)) print('True relic: ' + str(true_relic)) print('Max liklehood estimation Py: ' + str(est_dc_py)) print('Max liklehood estimation C: ' + str(est_dc_c)) print('Likelyhood Py: ' + str(best_pest_py)) print('Likelyhood C: ' + str(best_pest_c)) relics, thetas = np.meshgrid(relics, thetas) plt.figure(figsize=(5, 5)) plt.xlabel('$\\theta$ (virulence)') plt.ylabel('$\\rho$ (background)') plt.contourf(thetas, relics, ps_py, levels=15) plt.scatter([est_th_py], [est_dc_py], color='blue', marker='+') plt.scatter([true_theta], [true_relic], color='red', marker='o') plt.show() plt.figure(figsize=(5, 5)) plt.xlabel('$\\theta$ (virulence)') plt.ylabel('$\\rho$ (background)') plt.contourf(thetas, relics, ps_c, levels=15) plt.scatter([est_th_c], [est_dc_c], color='blue', marker='+') plt.scatter([true_theta], [true_relic], color='red', marker='o') plt.show()
def test_SI_relic(ntw: Network, true_theta: float, true_relic: float, continuous=False): dt = 1 if continuous: dt = 0.01 result = Simulator.simulate_SI_relic(underlying=ntw, theta=true_theta, relic=true_relic, infected={1}, tmax=300, dt=dt) print(result) est_th = .0 est_dc = .0 best_pest = 0 ml_pval = 0 total_pest = 0 th = 0.0 thetas = np.arange(0.001, 0.11, 0.001) relics = np.arange(0.001, 0.11, 0.001) ps = np.zeros((len(thetas), len(relics))) i = 0 for th in thetas: dc = 0.0 j = 0 for dc in relics: if continuous: pest = math.exp( Simulator.estimate_SI_relic_continuous( underlying=ntw, outcome=result['outcome'], theta=th, relic=dc, initials={1}, tmax=300)) else: pest = Simulator.estimate_SI_relic(underlying=ntw, outcome=result['outcome'], theta=th, relic=dc, initials={1}, tmax=300, dt=dt) # print(str(th) + ' ' + str(pest)) if pest > best_pest: best_pest = pest est_th = th est_dc = dc ps[i][j] = pest total_pest += pest j += 1 i += 1 print('True theta: ' + str(true_theta)) print('Max liklehood estimation: ' + str(est_th)) print('True relic: ' + str(true_relic)) print('Max liklehood estimation: ' + str(est_dc)) print('Probability: ' + str(best_pest)) relics, thetas = np.meshgrid(relics, thetas) # fig = plt.figure() # ax = Axes3D(fig) # ax.plot_surface(thetas, relics, ps, rstride=1, cstride=1, cmap=cm.viridis) # plt.show() plt.figure(figsize=(5, 5)) plt.xlabel('$\\theta$ (virulence)') plt.ylabel('$\\rho$ (background)') plt.contourf(thetas, relics, ps, levels=15) plt.scatter([est_th], [est_dc], color='blue', marker='+') plt.scatter([true_theta], [true_relic], color='red', marker='o') plt.show()
def test_SI_halflife(ntw: Network, true_theta: float, true_halflife: float, continuous=False): dt = 1 if continuous: dt = 0.01 result = Simulator.simulate_SI_halflife(underlying=ntw, theta=true_theta, halflife=true_halflife, infected={1}, tmax=300, dt=dt) #result = Simulator.simulate_SI(underlying=ntw, theta=true_theta, infected={1}, tmax=300, dt=1) print(result) est_th = .0 est_dc = .0 best_pest = 0 ml_pval = 0 total_pest = 0 th = 0.0 thetas = np.arange(0.001, 1.001, 0.01) #thetas = np.array([true_theta]) recovers = np.arange(1, 50, 0.5) #recovers = np.array([true_halflife]) ps = np.zeros((len(thetas), len(recovers))) i = 0 for th in thetas: dc = 0.0 j = 0 for dc in recovers: if continuous: pest = math.exp( Simulator.estimate_SI_relic_halflife_continuous( underlying=ntw, outcome=result['outcome'], theta=th, halflife=dc, relic=.0, initials={1}, tmax=300)) else: pest = Simulator.estimate_SI_halflife( underlying=ntw, outcome=result['outcome'], theta=th, halflife=dc, initials={1}, tmax=300, dt=dt) # print(str(th) + ' ' + str(pest)) if pest > best_pest: best_pest = pest est_th = th est_dc = dc ps[i][j] = pest total_pest += pest j += 1 i += 1 # pval = de.estimate_pvalue_SI_decay(underlying=ntw, outcome=result['outcome'], theta=est_th, initials={1}, tmax=300, dt=1, # n_iterations=1000) print('True theta: ' + str(true_theta)) print('Max liklehood estimation: ' + str(est_th)) print('True halflife: ' + str(true_halflife)) print('Max liklehood estimation: ' + str(est_dc)) print('Probability: ' + str(best_pest)) # print('p-val: ' + str(pval)) # psnorm = stat.normalize_series(ps) # confide = stat.confidential_from_p_series(psnorm, 0.95) # print('0.95 confidential interval: (' + str(thetas[confide[0]]) + ', ' + str(thetas[confide[1]]) + ')') decays, thetas = np.meshgrid(recovers, thetas) # fig = plt.figure() # ax = Axes3D(fig) # ax.plot_surface(thetas, decays, ps, rstride=1, cstride=1, cmap=cm.viridis) # plt.show() plt.figure(figsize=(5, 5)) plt.xlabel('$\\theta$ (virulence)') plt.ylabel('$\\delta$ (halflife)') plt.contourf(thetas, decays, ps, levels=15) plt.scatter([est_th], [est_dc], color='blue', marker='+') plt.scatter([true_theta], [true_halflife], color='red', marker='o') plt.show()
def test_display_simulation_infections_ensemble(netwrk, theta, decay, relic, n_infections): netman = NetworkManager(net=netwrk, name='temp', base_dir='D:/BigData/Charity/Cascades/') netman.save_to_file() dt = 0.01 tmax = 80 outcomes = [] initials = [] for kk in range(n_infections): start_id = random.randint(1, 29) start_id = 1 initials.append(start_id) result = Simulator.simulate_SI_decay_confirm_relicexp_hetero( underlying=netwrk, theta=theta, relic=relic, confirm=.0, decay=decay, infected={start_id}, tmax=tmax, dt=dt, echo=False) result['outcome'][start_id] = .0 outcomes.append(result['outcome']) est.set_diffusion_data_ensemble(netman.get_dos_filepath(), counters={}, outcomes=outcomes, echo=True) # p1 = .0 # for kk in range(n_infections): # p = math.log(Simulator.estimate_SI_decay_confirm_relicexp_hetero(underlying=netwrk, theta=theta, # relic=relic, # confirm=.0, decay=decay, # initials={initials[kk]}, # tmax=tmax, dt=dt, echo=True, # outcome=outcomes[kk]) # /(dt**(len(outcomes[kk])-1))) # p1 += p # print(str(p) + '\n') # # p2 = -est.loglikelyhood_noconfirm_ensemble([theta, decay, relic], observe_time=tmax) # print(p1) # print(p2) # # return thetas = np.arange(0.0001, 0.05, 0.0005) relics = np.arange(0.0001, 0.05, 0.0005) ps = np.zeros((len(thetas), len(relics))) ps2 = np.zeros((len(thetas), len(relics))) best_pest = 1.0 best_pest2 = 1.0 # for kk in range(n_infections): # best_pest += math.log(Simulator.estimate_SI_decay_confirm_relicexp_hetero(underlying=netwrk, theta=thetas[0], # relic=relic, # confirm=.0, decay=relics[0], initials={initials[kk]}, # tmax=tmax, dt=dt, echo=False, # outcome=outcomes[kk])/(dt**(len(outcomes[kk])-1))) best_pest2 = -est.loglikelyhood_noconfirm_ensemble( [thetas[0], relics[0], relic], observe_time=tmax) est_th = 0 est_dc = 0 est_th2 = 0 est_dc2 = 0 i = 0 for th in thetas: dc = 0.0 j = 0 for dc in relics: pest = .0 # for kk in range(n_infections): # pest += math.log(Simulator.estimate_SI_decay_confirm_relicexp_hetero(underlying=netwrk, theta=th, # relic=relic, # confirm=.0, decay=dc, initials={initials[kk]}, # tmax=tmax, dt=dt, echo=False, # outcome=outcomes[kk])/(dt**(len(outcomes[kk])-1))) pest2 = -est.loglikelyhood_noconfirm_ensemble([th, dc, relic], observe_time=tmax) print( str(th) + ' ' + str(dc) + ' ' + str(pest) + ' ' + str(pest2) + ' ' + str(abs(pest - pest2))) if pest > best_pest: best_pest = pest est_th = th est_dc = dc ps[i][j] = pest if pest2 > best_pest2: best_pest2 = pest2 est_th2 = th est_dc2 = dc ps2[i][j] = pest2 j += 1 i += 1 relics, thetas = np.meshgrid(relics, thetas) border_pest = best_pest - 300 for i in range(len(thetas)): for j in range(len(relics)): if ps[i][j] >= border_pest: ps[i][j] = math.exp(ps[i][j] - border_pest) else: ps[i][j] = .0 plt.subplot(1, 2, 1) #plt.figure(figsize=(5, 5)) plt.xlabel('$\\theta$ (virulence)') plt.ylabel('$\\delta$ (decay)') plt.contourf(thetas, relics, ps, levels=15) plt.scatter([est_th], [est_dc], color='blue', marker='+') plt.scatter([theta], [decay], color='red', marker='o') #plt.show() border_pest2 = best_pest2 - 300 for i in range(len(thetas)): for j in range(len(relics)): if ps2[i][j] >= border_pest2: ps2[i][j] = math.exp(ps2[i][j] - border_pest2) else: ps2[i][j] = .0 plt.subplot(1, 2, 2) #plt.figure(figsize=(5, 5)) plt.xlabel('$\\theta$ (virulence)') plt.ylabel('$\\delta$ (decay)') plt.contourf(thetas, relics, ps2, levels=15) plt.scatter([est_th2], [est_dc2], color='blue', marker='+') plt.scatter([theta], [decay], color='red', marker='o') plt.show()
def test_simulation_infections_ensemble_by_observe_time( netwrk, theta, decay, relic, n_infections, tmax, dt): netman = NetworkManager(net=netwrk, name='temp', base_dir='D:/BigData/Charity/Cascades/') netman.save_to_file() ths = [] rels = [] decs = [] thnorms = [] th = [] rl = [] dc = [] outcomes = [] for kk in range(n_infections): start_id = random.randint(1, 29) result = Simulator.simulate_SI_decay_confirm_relicexp_hetero( underlying=netwrk, theta=theta, relic=relic, confirm=.0, decay=decay, infected={start_id}, tmax=tmax, dt=0.01) result['outcome'][start_id] = .0 outcomes.append(result['outcome']) for i in range(40, tmax, dt): outcomes_trimmed = [] for outcome in outcomes: new_outcome = {} for node_id, time in outcome.items(): if time <= i: new_outcome[node_id] = time outcomes_trimmed.append(new_outcome) print(outcomes_trimmed) est.set_diffusion_data_ensemble(netman.get_dos_filepath(), counters={}, outcomes=outcomes_trimmed, echo=True) estimation = est.llmax_for_diffusion_noconfirm_ensemble( theta * math.exp((0.5 - random.random()) * 4), decay, relic * math.exp((0.5 - random.random()) * 4), disp=True, observe_time=i) print('Max: ' + str(estimation)) print('Norm: ' + str(estimation['theta'] / estimation['relic'])) ths.append(estimation['theta']) rels.append(estimation['relic']) decs.append(estimation['decay']) thnorms.append(estimation['theta'] / estimation['relic']) th.append(theta) rl.append(relic) dc.append(decay) # plt.plot(ths) # plt.plot(rels) # plt.plot(decs) plt.plot(ths, 'r') plt.plot(th, 'r--') plt.plot(rels, 'g') plt.plot(rl, 'g--') plt.plot(decs, 'b') plt.plot(dc, 'b--') plt.show()
def test_simulation_infections_ensemble_by_n_infections( netwrk, theta, decay, relic, n_infections, newlib=False): netman = NetworkManager(net=netwrk, name='temp', base_dir='D:/BigData/Charity/Cascades/') netman.save_to_file() ths = [] rels = [] decs = [] thnorms = [] th = [] rl = [] dc = [] for i in range(n_infections): outcomes = [] for kk in range(i): start_id = random.randint(1, 29) result = Simulator.simulate_SI_decay_confirm_relicexp_hetero( underlying=netwrk, theta=theta, relic=relic, confirm=.0, decay=decay, infected={start_id}, tmax=300, dt=0.01) result['outcome'][start_id] = .0 outcomes.append(result['outcome']) if newlib == True: observe_times = [600 for j in range(len(outcomes))] est.set_diffusion_data_ensemble_newlib(netman.get_dos_filepath(), outcomes=outcomes, observe_times=observe_times, echo=True) estimation = est.llmax_for_diffusion_noconfirm( theta * math.exp((0.5 - random.random()) * 4), decay, relic * math.exp((0.5 - random.random()) * 4), disp=True, new_lib=True) else: est.set_diffusion_data_ensemble(netman.get_dos_filepath(), counters={}, outcomes=outcomes, echo=True) estimation = est.llmax_for_diffusion_noconfirm_ensemble( theta * math.exp((0.5 - random.random()) * 4), decay, relic * math.exp((0.5 - random.random()) * 4), disp=True, observe_time=600) print('Max: ' + str(estimation)) print('Norm: ' + str(estimation['theta'] / estimation['relic'])) ths.append(estimation['theta']) rels.append(estimation['relic']) decs.append(estimation['decay']) thnorms.append(estimation['theta'] / estimation['relic']) th.append(theta) rl.append(relic) dc.append(decay) # plt.plot(ths) # plt.plot(rels) # plt.plot(decs) plt.plot(ths, 'r') plt.plot(th, 'r--') plt.plot(rels, 'g') plt.plot(rl, 'g--') plt.plot(decs, 'b') plt.plot(dc, 'b--') plt.show()
def test_simulation_dlldthetas(netwrk, theta, decay, relic): netman = NetworkManager(net=netwrk, name='temp', base_dir='D:/BigData/Charity/Cascades/') netman.save_to_file() targ_id = 2 # for i in range(100): thetas = {} for j in netman.network.nodes_ids: thetas[j] = theta * math.exp((0.5 - random.random()) * 4) thetas[targ_id] *= 10 l = list(thetas.items()) l.sort(key=lambda i: i[1]) true_rank = 0 i = 0 for el in l: print(str(el[0]) + ' : ' + str(el[1])) i += 1 if el[0] == targ_id: true_rank = i N = 10 avg_dll_rank = .0 avg_ll_rank = .0 avg_dll_corr = .0 avg_ll_corr = .0 dll_rank_diff = .0 ll_rank_diff = .0 for kk in range(N): result = Simulator.simulate_SI_decay_confirm_relicexp_hetero( underlying=netwrk, theta=theta, relic=relic, confirm=.0, decay=decay, infected={1}, tmax=300, dt=0.01, thetas=thetas) result['outcome'][1] = .0 #print(result) est.set_diffusion_data(netman.get_dos_filepath(), counters={}, outcome=result['outcome'], echo=False) estimation = est.llmax_for_diffusion_noconfirm(theta, decay, relic, disp=False) #print('Max: ' + str(estimation)) dlldthetas = est.dlldthetas_noconfirm(estimation['theta'], estimation['decay'], estimation['relic'], result['outcome'].keys(), 300) outcome_sorted = list(result['outcome'].items()) outcome_sorted.sort(key=lambda i: i[1]) out_thetas = [] llthetas_sorted = [] llthetas = {} dlldthetas_sorted = [] for node_id in result['outcome'].keys(): out_thetas.append(thetas[node_id]) dlldthetas_sorted.append(dlldthetas[node_id]) llthetas[ node_id] = est.llmax_for_diffusion_noconfirm_by_node_theta( node_id, estimation['theta'], estimation['decay'], estimation['relic'], (0.0001, 1.), disp=False) llthetas_sorted.append(llthetas[node_id]) avg_dll_corr += sp_stat.spearmanr(out_thetas, dlldthetas_sorted)[0] avg_ll_corr += sp_stat.spearmanr(out_thetas, llthetas_sorted)[0] print('true_rank: ' + str(true_rank)) l = list(dlldthetas.items()) l.sort(key=lambda i: i[1]) for pp in range(len(l)): if l[pp][0] == targ_id: print('dll_rank: ' + str(pp)) avg_dll_rank += pp dll_rank_diff += abs(pp - true_rank) break l = list(llthetas.items()) l.sort(key=lambda i: i[1]) for pp in range(len(l)): if l[pp][0] == targ_id: print('ll_rank: ' + str(pp) + ' est_theta: ' + str(l[pp][1]) + ' theta: ' + str(estimation['theta'])) avg_ll_rank += pp ll_rank_diff += abs(pp - true_rank) break print('avg_dll_rank: ' + str(avg_dll_rank / N)) print('avg_dll_corr: ' + str(avg_dll_corr / N)) print('avg_ll_rank: ' + str(avg_ll_rank / N)) print('avg_ll_corr: ' + str(avg_ll_corr / N)) print('true_rank: ' + str(true_rank)) print('dll_rank_diff ' + str(dll_rank_diff / N)) print('ll_rank_diff ' + str(ll_rank_diff / N))