def getBlockOfCols(nT,*args):
    mnT = MergedNumericTable()
    for idx in range(args[0],args[1]):
        doubleBlock = BlockDescriptor_Float64()
        nT.getBlockOfColumnValues(idx, 0, nT.getNumberOfRows(), readOnly, doubleBlock)
        mnT.releaseBlockOfColumnValues(doubleBlock)
    return mnT
示例#2
0
def getArrayFromNT(table, nrows=0):
    bd = BlockDescriptor_Float64()
    if nrows == 0:
        nrows = table.getNumberOfRows()
    table.getBlockOfRows(0, nrows, readOnly, bd)
    npa = bd.getArray()
    table.releaseBlockOfRows(bd)
    return npa
 def getArrayFromNT(self, nT):
     doubleBlock = BlockDescriptor_Float64()
     firstRow = 0
     lastRow = nT.getNumberOfRows()
     firstCol = 0
     lastCol = nT.getNumberOfColumns()
     nT.getBlockOfRows(firstRow, lastRow, readOnly, doubleBlock)
     getArray = doubleBlock.getArray()
     return getArray
示例#4
0
 def _computeMulticlassQualityMetrics(self, nclasses):
     # Alg object for quality metrics computation
     quality_alg = multiclass_quality.Batch(nclasses)
     # Get access to the input parameter
     input = quality_alg.getInputDataCollection().getInput(
             multiclass_quality.confusionMatrix)
     # Pass ground truth and predictions as input
     input.set(multiclass_confusion_matrix.groundTruthLabels, self._truth)
     input.set(multiclass_confusion_matrix.predictedLabels, self._predictions)
     # Compute confusion matrix
     confusion = quality_alg.compute().getResult(multiclass_quality.confusionMatrix)
     # Retrieve quality metrics from the confusion matrix
     metrics = confusion.get(multiclass_confusion_matrix.multiClassMetrics)
     # Convert the metrics into a Python namedtuple and return it
     block = BlockDescriptor_Float64()
     metrics.getBlockOfRows(0, 1, readOnly, block)
     x = block.getArray().flatten()
     self._metrics = MultiClassMetrics(*x)
     metrics.releaseBlockOfRows(block)
示例#5
0
def getArrayFromNT(nT, *args):
    doubleBlock = BlockDescriptor_Float64()
    if not args:
        firstRow = 0
        lastRow = nT.getNumberOfRows()
        firstCol = 0
        lastCol = nT.getNumberOfColumns()
    else:
        if args[0] == "head":
            firstRow = 0
            lastRow = 5
            firstCol = 0
            lastCol = 5
        if args[0] == "tail":
            firstRow = nT.getNumberOfRows() - 5
            lastRow = nT.getNumberOfRows()
            firstCol = 0
            lastCol = 5
    nT.getBlockOfRows(firstRow, lastRow, readOnly, doubleBlock)
    getArray = doubleBlock.getArray()
    return getArray