示例#1
0
文件: __init__.py 项目: iburyl/Labs
def printTensor3d(dataTable,
                  message="",
                  nFirstDim=0,
                  nSecondDim=0,
                  interval=10):
    dims = dataTable.getDimensions()
    nRows = int(dims[0])
    nCols = int(dims[1])

    if nFirstDim != 0:
        nFirstDim = min(nRows, nFirstDim)
    else:
        nFirstDim = nRows

    if nSecondDim != 0:
        nSecondDim = min(nCols, nSecondDim)
    else:
        nSecondDim = nCols

    block = SubtensorDescriptor()

    print(message)
    for i in range(nFirstDim):
        dataTable.getSubtensor([i], 0, nSecondDim, readOnly, block)

        nThirdDim = block.getSize() / nSecondDim

        printArray(block.getArray(), int(nThirdDim), int(nSecondDim),
                   int(nThirdDim), "", interval)

        dataTable.releaseSubtensor(block)
示例#2
0
文件: __init__.py 项目: iburyl/Labs
def printTensor(dataTable,
                message="",
                nPrintedRows=0,
                nPrintedCols=0,
                interval=10):
    dims = dataTable.getDimensions()
    nRows = int(dims[0])

    if nPrintedRows != 0:
        nPrintedRows = min(nRows, nPrintedRows)
    else:
        nPrintedRows = nRows

    block = SubtensorDescriptor()

    dataTable.getSubtensor([], 0, nPrintedRows, readOnly, block)

    nCols = int(block.getSize() / nPrintedRows)

    if nPrintedCols != 0:
        nPrintedCols = min(nCols, nPrintedCols)
    else:
        nPrintedCols = nCols

    printArray(block.getArray(), int(nPrintedCols), int(nPrintedRows),
               int(nCols), message, interval)
    dataTable.releaseSubtensor(block)
示例#3
0
    def _readBatchFromDataset(self, in_file, counter):
        """Reads batch of images coresponding to the current reader position"""

        imagesBatchSize = self._imagesInBatch * self._imageChannels * self._imageWidth * self._imageHeight
        batchPosition = self._imagesPosition + imagesBatchSize * counter
        in_file.seek(batchPosition)

        dataBatch = allocateTensor(np.float32, self._imagesInBatch,
                                   self._imageChannels, self._imageHeight,
                                   self._imageWidth)
        trainTensorSize = dataBatch.getSize()

        batchBlock = SubtensorDescriptor(ntype=np.float32)
        dataBatch.getSubtensor([], 0, self._imagesInBatch, writeOnly,
                               batchBlock)
        objectsPtr = batchBlock.getArray()

        binary_data_str = in_file.read(trainTensorSize)
        objectData = np.array(struct.unpack('B' * trainTensorSize,
                                            binary_data_str),
                              dtype=np.float32)

        for x, i in zip(np.nditer(objectsPtr, op_flags=['readwrite']),
                        range(len(objectData))):
            x[...] = objectData[i]

        dataBatch.releaseSubtensor(batchBlock)
        return dataBatch
示例#4
0
	def __init__(self, tensor, read_type=np.float32):
		if not isinstance(tensor, Tensor):
			raise ValueError(PYDAAL_NOT_A_TENSOR % type(tensor))

		self.tensor = tensor
		self.block = SubtensorDescriptor(ntype=read_type)
		self.tensor.getSubtensor([], 0, tensor.getDimensionSize(0), readOnly, self.block)
示例#5
0
def findClasses(dataTable):
    dims1 = dataTable.getDimensions()
    nRows1 = int(dims1[0])
    block1 = SubtensorDescriptor()
    dataTable.getSubtensor([], 0, nRows1, readOnly, block1)
    nCols1 = int(block1.getSize() / nRows1)
    dataType = block1.getArray().flatten()
    dataType = np.reshape(dataType, (nRows1, nCols1))
    classes = np.argmax(dataType, axis=1)
    dataTable.releaseSubtensor(block1)
    return classes
示例#6
0
    def predict(self, data, batch_size=None, rebuild=True):
        """Predicts labels based on a prediction model.

		Supported notation is ``with net.predict(...) as predictions:``

		Args:
			data (:obj:`daal.data_management.Tensor` or :obj:`numpy.ndarray`): Prediction data.
			batch_size (:obj:`int`): Batch size for processing prediction data.
			rebuild (:obj:`bool`): Control parameter to force rebuild of the model.

		Returns:
			:py:class:`pydaalcontrib.nn.DAALNet`: DAAL network with the evaluated predictions.   

		Raises:
			 ValueError: If the provided ``data`` are of the wrong type.
		"""
        if isinstance(data, np.ndarray):
            _data = HomogenTensor(data.copy(), ntype=data.dtype)
        elif not isinstance(data, Tensor):
            raise ValueError('Data is not of numpy.ndarray or Tensor type!')

        if not batch_size or batch_size > _data.getDimensionSize(0):
            batch_size = _data.getDimensionSize(0)

        if rebuild and self.do_rebuild:
            #TODO: refactor set rebuild=False once memory allocation is fixed on prediction in Intel DAAL 2018
            parameter = prediction.Parameter()
            parameter.batchSize = batch_size
            self.do_rebuild = False
            rebuild_args = {
                'data_dims': [batch_size] + _data.getDimensions()[1:],
                'parameter': parameter
            }
            self.model = self.build_model(self.descriptor,
                                          False,
                                          rebuild=rebuild_args,
                                          **self.build_args)
        elif 'train_result' in self.__dict__:
            self.model = self.train_result.get(
                training.model).getPredictionModel_Float32()

        net = prediction.Batch()
        net.parameter.batchSize = batch_size
        net.input.setModelInput(prediction.model, self.model)
        net.input.setTensorInput(prediction.data, _data)

        self.predictions = SubtensorDescriptor(ntype=data.dtype)
        self.predict_result = net.compute().getResult(prediction.prediction)
        self.predict_result.getSubtensor(
            [], 0, self.predict_result.getDimensionSize(0), readOnly,
            self.predictions)

        return self
def getNextSubtensor(inputTensor, startPos, nElements):
    dims = inputTensor.getDimensions()
    dims[0] = nElements

    subtensorBlock = SubtensorDescriptor(ntype=np.float32)
    inputTensor.getSubtensor([], startPos, nElements, readOnly, subtensorBlock)
    subtensorData = np.array(subtensorBlock.getArray(),
                             copy=True,
                             dtype=np.float32)
    inputTensor.releaseSubtensor(subtensorBlock)

    return HomogenTensor(subtensorData, ntype=np.float32)
示例#8
0
class DataReader:
	"""Wrapper class for reading Intel DAAL tensors.
	
	Supported notation is ``with DataReader(...) as result:``.

	Args:
		tensor (:obj:`daal.data_management.Tensor`): Provided tensor.
		read_type (:obj:`numpy.dtype`, optional): Numpy type for the result tensor.   

	Raises:
		 ValueError: If provided argument is not a :obj:`daal.data_management.Tensor`.
	"""
	def __init__(self, tensor, read_type=np.float32):
		if not isinstance(tensor, Tensor):
			raise ValueError(PYDAAL_NOT_A_TENSOR % type(tensor))

		self.tensor = tensor
		self.block = SubtensorDescriptor(ntype=read_type)
		self.tensor.getSubtensor([], 0, tensor.getDimensionSize(0), readOnly, self.block)

	def __enter__(self):
		return self.block.getArray()

	def __exit__(self, type, value, traceback):
		self.tensor.releaseSubtensor(self.block)
示例#9
0
文件: __init__.py 项目: iburyl/Labs
def printTensors(dataTable1,
                 dataTable2,
                 title1="",
                 title2="",
                 message="",
                 nPrintedRows=0,
                 interval=15):
    dims1 = dataTable1.getDimensions()
    nRows1 = int(dims1[0])

    if nPrintedRows != 0:
        nPrintedRows = min(nRows1, nPrintedRows)
    else:
        nPrintedRows = nRows1

    block1 = SubtensorDescriptor()
    dataTable1.getSubtensor([], 0, nPrintedRows, readOnly, block1)
    nCols1 = int(block1.getSize() / nPrintedRows)

    dims2 = dataTable2.getDimensions()
    nRows2 = int(dims2[0])

    if nPrintedRows != 0:
        nPrintedRows = min(nRows2, nPrintedRows)
    else:
        nPrintedRows = nRows2

    block2 = SubtensorDescriptor()
    dataTable2.getSubtensor([], 0, nPrintedRows, readOnly, block2)
    nCols2 = int(block2.getSize() / nPrintedRows)

    dataType1 = block1.getArray().flatten()
    dataType2 = block2.getArray().flatten()

    print(message)
    print("{:<{width}}".format(title1, width=(interval * nCols1)), end='')
    print("{:<{width}}".format(title2, width=(interval * nCols2)))

    for i in range(nPrintedRows):
        for j in range(nCols1):
            print("{v:<{width}.0f}".format(v=dataType1[i * nCols1 + j],
                                           width=interval),
                  end='')

        for j in range(nCols2):
            print("{:<{width}.3f}".format(dataType2[i * nCols2 + j],
                                          width=int(interval / 2)),
                  end='')
        print()
    print()

    dataTable1.releaseSubtensor(block1)
    dataTable2.releaseSubtensor(block2)
示例#10
0
    def _readGroundTruthFromDataset(self, in_file, counter):
        """Reads batch of labels coresponding to the current reader position"""

        batchLabelsSize = self._imagesInBatch * 4
        batchPosition = self._classesPosition + batchLabelsSize * counter
        in_file.seek(batchPosition)

        groundTruthBatch = allocateTensor(np.intc, self._imagesInBatch, 1)

        groundTruthBlock = SubtensorDescriptor(ntype=np.intc)
        groundTruthBatch.getSubtensor([], 0, self._imagesInBatch, writeOnly,
                                      groundTruthBlock)
        groundTruthPtr = groundTruthBlock.getArray()

        for x in np.nditer(groundTruthPtr, op_flags=['readwrite']):
            x[...] = int(self._readDWORD(in_file))

        groundTruthBatch.releaseSubtensor(groundTruthBlock)
        return groundTruthBatch
示例#11
0
    def update(self, _prediction, _groundTruth):
        if not _prediction:
            raise RuntimeError("Prediction tensor should not be null")
        if not _groundTruth:
            raise RuntimeError("GroundTruth tensor should not be null")

        dimensions = _prediction.getDimensions()
        if len(dimensions) != 2:
            raise RuntimeError(
                "Predictions tensor should have exactly two dimensions")
        rowsNum = dimensions[0]
        colsNum = dimensions[1]

        if colsNum < ClassificationErrorCounter.MAX_ERROR_RATE_CLASSES:
            raise RuntimeError(
                "Number of classes in prediction result is not enough to compute error rate"
            )

        predictionBlock = SubtensorDescriptor(ntype=np.float32)
        _prediction.getSubtensor([], 0, dimensions[0], readOnly,
                                 predictionBlock)
        predictionRows = predictionBlock.getArray()

        groundTruthBlock = SubtensorDescriptor(ntype=np.intc)
        _groundTruth.getSubtensor([], 0, dimensions[0], readOnly,
                                  groundTruthBlock)
        groundTruthClasses = groundTruthBlock.getArray()

        for i in range(rowsNum):
            row = predictionRows[i]
            topIndices = self.findTopIndices(
                row, colsNum,
                ClassificationErrorCounter.MAX_ERROR_RATE_CLASSES)
            groundTruthClass = groundTruthClasses[0][i]

            self._totalObjects += 1
            if groundTruthClass in topIndices:
                self._top5ClassifiedObjects += 1
                if groundTruthClass == topIndices[0]:
                    self._top1ClassifiedObjects += 1

        _prediction.releaseSubtensor(predictionBlock)
        _groundTruth.releaseSubtensor(groundTruthBlock)
示例#12
0
def printPredictedClasses(_predictionResult, _testingGroundTruth):
    _prediction = _predictionResult.getResult(prediction.prediction)
    predictionDimensions = _prediction.getDimensions()

    predictionBlock = SubtensorDescriptor()
    _prediction.getSubtensor([], 0, predictionDimensions[0], readOnly,
                             predictionBlock)
    predictionPtr = predictionBlock.getArray()

    testGroundTruthBlock = SubtensorDescriptor(ntype=np.intc)
    _testingGroundTruth.getSubtensor([], 0, predictionDimensions[0], readOnly,
                                     testGroundTruthBlock)
    testGroundTruthPtr = testGroundTruthBlock.getArray().flatten()

    # Print predicted classes
    maxPIndex = np.argmax(predictionPtr, axis=1)
    for i in range(predictionDimensions[0]):
        for p in predictionPtr[i]:
            print("{:.4f} ".format(p), end="")
        print(" -> {} | {}".format(maxPIndex[i], testGroundTruthPtr[i]))

    _prediction.releaseSubtensor(predictionBlock)
    _testingGroundTruth.releaseSubtensor(testGroundTruthBlock)
示例#13
0
def checkResult(predictionResult, testingGroundTruth, TestDataCount):
    pred = predictionResult.getResult(prediction.prediction)
    predictionDimensions = pred.getDimensions()

    predictionBlock = SubtensorDescriptor()
    pred.getSubtensor([], 0, predictionDimensions[0], readOnly,
                      predictionBlock)
    predictionPtr = predictionBlock.getArray()

    testGroundTruthBlock = SubtensorDescriptor(ntype=np.intc)
    testingGroundTruth.getSubtensor([], 0, predictionDimensions[0], readOnly,
                                    testGroundTruthBlock)
    testGroundTruthPtr = testGroundTruthBlock.getArray().flatten()
    maxPIndex = 0
    trueCount = 0

    # validation accuracy finding
    maxPIndex = np.argmax(predictionPtr, axis=1)
    trueCount = np.sum(maxPIndex == testGroundTruthPtr)

    pred.releaseSubtensor(predictionBlock)
    testingGroundTruth.releaseSubtensor(testGroundTruthBlock)

    return True if trueCount / TestDataCount > 0.9 else False
示例#14
0
class DAALNet:
    """Wrapper class for working with :obj:`daal.algorithms.neural_networks` package.

	Notes
		Default working regime is training, see :obj:`daal.algorithms.neural_networks.training.Batch()`.
		Default solver used for training is SGD, see :obj:`daal.algorithms.optimization_solver.sgd.Batch()`.
	"""
    _daal_net_namespace = dict()

    def __init__(self):
        #TODO: set do_rebuild=False once memory allocation is fixed on prediction in Intel DAAL 2018
        self.do_rebuild = True
        self.initializer = None
        self.solver = sgd.Batch()
        self.net = training.Batch(self.solver)

    def with_solver(self, solver):
        """Provides a specific solver for the Intel DAAL net/graph.

		Args:
			solver (from :obj:`daal.algorithms.optimization_solver` module): Intel DAAL solver.

		Returns:
			:py:class:`pydaalcontrib.nn.DAALNet`: Intel DAAL network with the provided solver.
		"""
        self.solver = solver
        self.net = training.Batch(self.solver)

        return self

    def with_initializer(self, initializer):
        self.initializer = initializer
        return self

    def train(self, data, labels, **kw_args):
        """Trains a specific Intel DAAL net/graph based on the provided data and labels.

		Args:
			data (:obj:`daal.data_management.Tensor` or :obj:`numpy.ndarray`): Training data.
			labels (:obj:`daal.data_management.Tensor` or :obj:`numpy.ndarray`): Training labels.
			**kwargs: Arbitrary keyword arguments (``batch_size`` and ``learning_rate``).

		Returns:
			:py:class:`pydaalcontrib.nn.DAALNet`: Trained DAAL network.

		Raises:
			 ValueError: If the provided ``data`` or ``labels`` are of the wrong type or the topology is not set.
		"""
        if 'topology' not in self.__dict__:
            raise ValueError('Topology is not intialized!')
        if 'batch_size' in kw_args and 'result' not in self.__dict__:
            self.solver.parameter.batchSize = kw_args['batch_size']
        if 'learning_rate' in kw_args and 'learningRate' in self.solver.parameter.__swig_getmethods__:
            self.solver.parameter.learningRate = get_learning_rate(
                kw_args['learning_rate'])
        if 'learning_rate' in kw_args and 'learningRateSequence' in self.solver.parameter.__swig_getmethods__:
            self.solver.parameter.learningRateSequence = get_learning_rate(
                kw_args['learning_rate'])

        if isinstance(data, Tensor):
            self.data = data
        elif isinstance(data, np.ndarray) and data.base is not None:
            self.data = HomogenTensor(data.copy(), ntype=data.dtype)
        elif isinstance(data, np.ndarray) and data.base is None:
            self.data = HomogenTensor(data, ntype=data.dtype)
        else:
            raise ValueError('Data is not of numpy.ndarray or Tensor type!')

        if isinstance(labels, Tensor):
            self.labels = labels
        elif isinstance(labels, np.ndarray):
            if len(labels.shape) == 1:
                labels = labels.reshape([-1, 1])
            if issubdtype(labels, np.int):
                labels = labels.astype(np.intc)
            elif not issubdtype(labels, np.float):
                labels = labels.astype(np.float)

            self.labels = HomogenTensor(labels.copy(), ntype=labels.dtype)
        else:
            raise ValueError('Labels are not of numpy.ndarray or Tensor type!')

        if 'train_result' not in self.__dict__ or self.train_result is None:
            dims = self.data.getDimensions()[1:]
            dims.insert(0, self.solver.parameter.batchSize)
            self.net.initialize(dims, self.topology)

            # heuristically define the number of iterations for ``self.solver``
            batch_size = np.float(self.solver.parameter.batchSize)
            n_iter = np.ceil(self.data.getDimensionSize(0) / batch_size)
            self.solver.parameter.nIterations = np.int(n_iter)

        # Pass a solver, training data and lables to the algorithm
        self.net.parameter.optimizationSolver = self.solver
        self.net.input.setInput(training.data, self.data)
        self.net.input.setInput(training.groundTruth, self.labels)

        # Do an actual compute and store the result
        self.train_result = self.net.compute()
        self.do_rebuild = False

        return self

    #TODO: refactor set rebuild=False once memory allocation is fixed on prediction in Intel DAAL 2018
    def predict(self, data, batch_size=None, rebuild=True):
        """Predicts labels based on a prediction model.

		Supported notation is ``with net.predict(...) as predictions:``

		Args:
			data (:obj:`daal.data_management.Tensor` or :obj:`numpy.ndarray`): Prediction data.
			batch_size (:obj:`int`): Batch size for processing prediction data.
			rebuild (:obj:`bool`): Control parameter to force rebuild of the model.

		Returns:
			:py:class:`pydaalcontrib.nn.DAALNet`: DAAL network with the evaluated predictions.   

		Raises:
			 ValueError: If the provided ``data`` are of the wrong type.
		"""
        if isinstance(data, np.ndarray):
            _data = HomogenTensor(data.copy(), ntype=data.dtype)
        elif not isinstance(data, Tensor):
            raise ValueError('Data is not of numpy.ndarray or Tensor type!')

        if not batch_size or batch_size > _data.getDimensionSize(0):
            batch_size = _data.getDimensionSize(0)

        if rebuild and self.do_rebuild:
            #TODO: refactor set rebuild=False once memory allocation is fixed on prediction in Intel DAAL 2018
            parameter = prediction.Parameter()
            parameter.batchSize = batch_size
            self.do_rebuild = False
            rebuild_args = {
                'data_dims': [batch_size] + _data.getDimensions()[1:],
                'parameter': parameter
            }
            self.model = self.build_model(self.descriptor,
                                          False,
                                          rebuild=rebuild_args,
                                          **self.build_args)
        elif 'train_result' in self.__dict__:
            self.model = self.train_result.get(
                training.model).getPredictionModel_Float32()

        net = prediction.Batch()
        net.parameter.batchSize = batch_size
        net.input.setModelInput(prediction.model, self.model)
        net.input.setTensorInput(prediction.data, _data)

        self.predictions = SubtensorDescriptor(ntype=data.dtype)
        self.predict_result = net.compute().getResult(prediction.prediction)
        self.predict_result.getSubtensor(
            [], 0, self.predict_result.getDimensionSize(0), readOnly,
            self.predictions)

        return self

    def get_predictions(self):
        """Gets the latest predictions after :py:meth:`predict` was called.

		Returns:
			:py:obj:`numpy.ndarray`: Evaluated predictions.
		"""
        if 'predictions' in self.__dict__:
            predictions_numpy = self.predictions.getArray()
            self.predict_result.releaseSubtensor(self.predictions)
            return predictions_numpy
        else:
            return None

    def __enter__(self):
        return self.predictions.getArray()

    def __exit__(self, type, value, traceback):
        self.predict_result.releaseSubtensor(self.predictions)

    def allocate_model(self, model, args):
        """Allocates a contiguous memory for the model if 'rebuild' option is specified.

		Args:
			model (:obj:`daal.algorithms.neural_networks.prediction.Model`): instantiated model.
			args (:obj:`dict`): Different args which are passed from :py:func:`build_model`.

		Returns:
			:obj:`daal.algorithms.neural_networks.prediction.Model`
		"""
        if 'rebuild' in args:
            parameter = args['rebuild']['parameter']
            data_dims = args['rebuild']['data_dims']
            model.allocate_Float32(data_dims, parameter)

        return model

    def build_model(self, model, trainable, **kw_args):
        """(re)Builds a specific Intel DAAL model based on the provided descriptor.

		Args:
			model (:py:class:`pydaalcontrib.model.ModelBase` or :obj:`str`): Instance of a model or a path to the folder/file containing the model (*pydaal.model*) file.
			trainable (:obj:`bool`): Flag indicating whether `training` or `prediction` topology to be built.
			kw_args (:obj:`dict`): Different keyword args which might be of use in sub-classes.

		Returns:
			:obj:`daal.algorithms.neural_networks.prediction.Model` or ``None``
		"""
        if 'model' in self.__dict__:
            return self.allocate_model(self.model, kw_args)

        if isinstance(model, basestring):
            self.descriptor = load_model(model)
        else:
            self.descriptor = model

        self.topology = build_topology(self.descriptor,
                                       trainable,
                                       initializer=self.initializer)
        #TODO: replace with training.Model(topology) once fixed
        return None if trainable else self.allocate_model(
            prediction.Model(self.topology), kw_args)

    @dispatch(basestring, namespace=_daal_net_namespace)
    def build(self, model_path, trainable=False, **kw_args):
        self.model = self.build_model(model_path, trainable, **kw_args)
        self.build_args = {'model_path': model_path}
        self.build_args.update(kw_args)

        return self

    @dispatch(Model, namespace=_daal_net_namespace)
    def build(self, model, trainable=True, **kw_args):
        self.model = self.build_model(model, trainable, **kw_args)
        self.build_args = kw_args

        return self