def test_explain_titanic_val(model): # add multi-class # add regression titanic = load_titanic() titanic_clean = clean(titanic) X, y = titanic_clean.drop("survived", axis=1), titanic_clean.survived X_train, X_val, y_train, y_val = train_test_split(X, y, stratify=y, random_state=42) pipe = make_pipeline(EasyPreprocessor(), model) pipe.fit(X_train, y_train) # without validation set explain(pipe, feature_names=X.columns) # with validation set explain(pipe, X_val, y_val, feature_names=X.columns)
def test_explain_smoke_titanic(): titanic = load_titanic() sc = SimpleClassifier().fit(titanic, target_col='survived') explain(sc) titanic_clean = clean(titanic) sc = SimpleClassifier().fit(titanic_clean, target_col='survived') explain(sc) X, y = titanic_clean.drop("survived", axis=1), titanic_clean.survived ep = EasyPreprocessor() preprocessed = ep.fit_transform(X) tree = DecisionTreeClassifier().fit(preprocessed, y) explain(tree, feature_names=ep.get_feature_names()) pipe = make_pipeline(EasyPreprocessor(), LogisticRegression()) pipe.fit(X, y) explain(pipe, feature_names=pipe.steps[0][1].get_feature_names())