示例#1
0
def test_axpy():
    print("==== Program start ====")

    N.set(24)

    print('Scalar-vector multiplication %d' % (N.get()))

    # Initialize arrays: Randomize A and X, zero Y
    A = dace.float64(np.random.rand())
    X = np.random.rand(N.get()).astype(np.float64)
    Y = np.random.rand(N.get()).astype(np.float64)

    A_regression = np.float64()
    X_regression = np.ndarray([N.get()], dtype=np.float64)
    Y_regression = np.ndarray([N.get()], dtype=np.float64)
    A_regression = A
    X_regression[:] = X[:]
    Y_regression[:] = Y[:]

    sdfg = common.vectorize(axpy)

    sdfg(A=A, X=X, Y=Y, N=N)

    c_axpy = sp.linalg.blas.get_blas_funcs('axpy',
                                           arrays=(X_regression, Y_regression))
    if dace.Config.get_bool('profiling'):
        dace.timethis('axpy', 'BLAS', (2 * N.get()), c_axpy, X_regression,
                      Y_regression, N.get(), A_regression)
    else:
        c_axpy(X_regression, Y_regression, N.get(), A_regression)

    diff = np.linalg.norm(Y_regression - Y) / N.get()
    print("Difference:", diff)
    print("==== Program end ====")
    assert diff <= 1e-5
示例#2
0
def test_spmv():
    W.set(64)
    H.set(64)
    nnz.set(640)

    print('Sparse Matrix-Vector Multiplication %dx%d (%d non-zero elements)' %
          (W.get(), H.get(), nnz.get()))

    A_row = dace.ndarray([H + 1], dtype=dace.uint32)
    A_col = dace.ndarray([nnz], dtype=dace.uint32)
    A_val = dace.ndarray([nnz], dtype=dace.float32)

    x = dace.ndarray([W], dace.float32)
    b = dace.ndarray([H], dace.float32)

    # Assuming uniform sparsity distribution across rows
    nnz_per_row = nnz.get() // H.get()
    nnz_last_row = nnz_per_row + (nnz.get() % H.get())
    if nnz_last_row > W.get():
        print('Too many nonzeros per row')
        exit(1)

    # RANDOMIZE SPARSE MATRIX
    A_row[0] = dace.uint32(0)
    A_row[1:H.get()] = dace.uint32(nnz_per_row)
    A_row[-1] = dace.uint32(nnz_last_row)
    A_row = np.cumsum(A_row, dtype=np.uint32)

    # Fill column data
    for i in range(H.get() - 1):
        A_col[nnz_per_row*i:nnz_per_row*(i+1)] = \
            np.sort(np.random.choice(W.get(), nnz_per_row, replace=False))
    # Fill column data for last row
    A_col[nnz_per_row * (H.get() - 1):] = np.sort(
        np.random.choice(W.get(), nnz_last_row, replace=False))

    A_val[:] = np.random.rand(nnz.get()).astype(dace.float32.type)
    #########################

    x[:] = np.random.rand(W.get()).astype(dace.float32.type)
    b[:] = dace.float32(0)

    # Setup regression
    A_sparse = scipy.sparse.csr_matrix((A_val, A_col, A_row),
                                       shape=(H.get(), W.get()))

    sdfg = spmv.to_sdfg()
    vectorize(sdfg, 'j')

    sdfg(A_row=A_row, A_col=A_col, A_val=A_val, x=x, b=b, H=H, W=W, nnz=nnz)

    if dace.Config.get_bool('profiling'):
        dace.timethis('spmv', 'scipy', 0, A_sparse.dot, x)

    diff = np.linalg.norm(A_sparse.dot(x) - b) / float(H.get())
    print("Difference:", diff)
    print("==== Program end ====")
    assert diff <= 1e-5
示例#3
0
def test_filter():
    N.set(64)
    ratio = np.float32(0.5)

    print('Predicate-Based Filter. size=%d, ratio=%f' % (N.get(), ratio))

    A = np.random.rand(N.get()).astype(np.float32)
    B = np.zeros_like(A)
    outsize = dace.scalar(dace.uint32)
    outsize[0] = 0

    sdfg = pbf.to_sdfg()
    vectorize(sdfg, 'i')

    sdfg(A=A, B=B, outsz=outsize, ratio=ratio, N=N)

    if dace.Config.get_bool('profiling'):
        dace.timethis('filter', 'numpy', 0, regression, A, ratio)

    filtered = regression(A, ratio)

    if len(filtered) != outsize[0]:
        print(
            "Difference in number of filtered items: %d (DaCe) vs. %d (numpy)"
            % (outsize[0], len(filtered)))
        totalitems = min(outsize[0], N.get())
        print('DaCe:', B[:totalitems].view(type=np.ndarray))
        print('Regression:', filtered.view(type=np.ndarray))
        exit(1)

    # Sort the outputs
    filtered = np.sort(filtered)
    B[:outsize[0]] = np.sort(B[:outsize[0]])

    if len(filtered) == 0:
        print("==== Program end ====")
        exit(0)

    diff = np.linalg.norm(filtered - B[:outsize[0]]) / float(outsize[0])
    print("Difference:", diff)
    if diff > 1e-5:
        totalitems = min(outsize[0], N.get())
        print('DaCe:', B[:totalitems].view(type=np.ndarray))
        print('Regression:', filtered.view(type=np.ndarray))

    print("==== Program end ====")
    assert diff <= 1e-5
示例#4
0
    #########################

    x[:] = np.random.rand(W.get()).astype(dtype.type)
    #b[:] = dtype(0)

    # Setup regression
    A_sparse = scipy.sparse.csr_matrix((A_val, A_col, A_row),
                                       shape=(H.get(), W.get()))

    spmv = make_sdfg(args["specialize"])
    if args["specialize"]:
        spmv.specialize(dict(H=H, W=W, nnz=nnz))
    spmv(A_row=A_row, A_col=A_col, A_val=A_val, x=x, b=b, H=H, W=W, nnz=nnz)

    if dace.Config.get_bool('profiling'):
        dace.timethis('spmv', 'scipy', 0, A_sparse.dot, x)

    diff = np.linalg.norm(A_sparse.dot(x) - b) / float(H.get())
    print("Difference:", diff)
    if diff >= 1e-5:
        print("Validation failed.")
        print("Result:")
        print(b)
        print("Reference:")
        print(A_sparse.dot(x))
        print("Type \"debug\" to enter debugger, "
              "or any other string to quit (timeout in 10 seconds)")
        read, _, _ = select.select([sys.stdin], [], [], 10)
        if len(read) > 0 and sys.stdin.readline().strip().lower() == "debug":
            print("Entering debugger...")
            pdb.set_trace()
示例#5
0
文件: mat_add.py 项目: cpenny42/dace
    print('Matrix addition %dx%d' % (M.get(), N.get()))

    # Initialize arrays: Randomize A and B, zero C
    A[:] = np.random.rand(M.get(), N.get()).astype(dace.float64.type)
    B[:] = np.random.rand(M.get(), N.get()).astype(dace.float64.type)
    C[:] = dace.float64(0)

    A_regression = np.ndarray([M.get(), N.get()], dtype=np.float64)
    B_regression = np.ndarray([M.get(), N.get()], dtype=np.float64)
    C_regression = np.ndarray([M.get(), N.get()], dtype=np.float64)
    A_regression[:] = A[:]
    B_regression[:] = B[:]
    C_regression[:] = C[:]

    if args["compile-only"]:
        dace.compile(mat_add, A, B, C)
    else:
        mat_add(A, B, C)

        if dace.Config.get_bool('profiling'):
            dace.timethis('mat_add', contender, dace.eval(2 * N * N * N),
                          np.dot, A_regression, B_regression, C_regression)
        else:
            np.add(A_regression, B_regression, C_regression)

    diff = np.linalg.norm(C_regression - C) / float(dace.eval(M * N))
    print("Difference:", diff)
    print("==== Program end ====")
    exit(0 if diff <= 1e-5 else 1)
示例#6
0
        a << A[i, j]
        out >> hist(1, lambda x, y: x + y)[:]

        out[min(int(a * BINS), BINS - 1)] = 1


if __name__ == "__main__":

    parser = argparse.ArgumentParser()
    parser.add_argument("W", type=int, nargs="?", default=32)
    parser.add_argument("H", type=int, nargs="?", default=32)
    args = vars(parser.parse_args())

    W.set(args["W"])
    H.set(args["H"])

    print('Histogram %dx%d' % (W.get(), H.get()))

    A = np.random.rand(H.get(), W.get()).astype(dace.float32.type)
    hist = np.zeros([BINS], dtype=np.uint32)

    histogram(A, hist)

    if dace.Config.get_bool('profiling'):
        dace.timethis('histogram', 'numpy', (H.get() * W.get()), np.histogram, A, BINS)

    diff = np.linalg.norm(np.histogram(A, bins=BINS, range=(0.0, 1.0))[0][1:-1] - hist[1:-1])
    print("Difference:", diff)
    print("==== Program end ====")
    exit(0 if diff <= 1e-5 else 1)
示例#7
0
        b >> B[i, j]

        b = a


if __name__ == "__main__":

    parser = argparse.ArgumentParser()
    parser.add_argument("W", type=int, nargs="?", default=64)
    parser.add_argument("H", type=int, nargs="?", default=64)
    args = vars(parser.parse_args())

    W.set(args["W"])
    H.set(args["H"])

    print('Transpose %dx%d' % (W.get(), H.get()))

    A = np.random.rand(H.get(), W.get()).astype(np.float32)
    B = np.zeros([W.get(), H.get()], dtype=np.float32)

    transpose(A, B)

    if dace.Config.get_bool('profiling'):
        dace.timethis('transpose', 'numpy', (H.get() * W.get()), np.transpose,
                      A)

    diff = np.linalg.norm(np.transpose(A) - B) / (H.get() * W.get())
    print("Difference:", diff)
    print("==== Program end ====")
    exit(0 if diff <= 1e-5 else 1)
示例#8
0
    N.set(args["N"])

    print('Scalar-vector multiplication %d' % (N.get()))

    # Initialize arrays: Randomize A and X, zero Y
    A = dace.float64(np.random.rand())
    X = np.random.rand(N.get()).astype(np.float64)
    Y = np.random.rand(N.get()).astype(np.float64)

    A_regression = np.float64()
    X_regression = np.ndarray([N.get()], dtype=np.float64)
    Y_regression = np.ndarray([N.get()], dtype=np.float64)
    A_regression = A
    X_regression[:] = X[:]
    Y_regression[:] = Y[:]

    axpy(A, X, Y)

    c_axpy = sp.linalg.blas.get_blas_funcs('axpy',
                                           arrays=(X_regression, Y_regression))
    if dace.Config.get_bool('profiling'):
        dace.timethis('axpy', 'BLAS', dace.eval(2 * N), c_axpy, X_regression,
                      Y_regression, N.get(), A_regression)
    else:
        c_axpy(X_regression, Y_regression, N.get(), A_regression)

    diff = np.linalg.norm(Y_regression - Y) / float(dace.eval(N))
    print("Difference:", diff)
    print("==== Program end ====")
    exit(0 if diff <= 1e-5 else 1)
示例#9
0
if __name__ == "__main__":

    parser = argparse.ArgumentParser()
    parser.add_argument("W", type=int, nargs="?", default=32)
    parser.add_argument("H", type=int, nargs="?", default=32)
    args = vars(parser.parse_args())

    A = dace.ndarray([H, W], dtype=dace.uint8)
    hist = dace.ndarray([BINS], dtype=dace.uint32)

    W.set(args["W"])
    H.set(args["H"])

    print('Histogram (dec) %dx%d' % (W.get(), H.get()))

    A[:] = np.random.randint(0, 256,
                             (H.get(), W.get())).astype(dace.uint8.type)
    hist[:] = dace.uint32(0)

    histogram(A, hist)

    if dace.Config.get_bool('profiling'):
        dace.timethis('histogram', 'numpy', dace.eval(H * W), np.histogram, A,
                      BINS)

    diff = np.linalg.norm(np.histogram(A, bins=BINS)[0] - hist)
    print("Difference:", diff)
    print("==== Program end ====")
    exit(0 if diff <= 1e-5 else 1)
示例#10
0
    histogram.draw_to_file()

    A = dace.ndarray([H, W], dtype=dtype)
    hist = dace.ndarray([num_bins], dtype=itype)

    A[:] = np.random.rand(H.get(), W.get()).astype(dace.float32.type)
    hist[:] = itype(0)

    if args["specialize"]:
        histogram(A=A, hist=hist)
    else:
        histogram(A=A, H=H, W=W, hist=hist)

    if dace.Config.get_bool('profiling'):
        dace.timethis('histogram', 'numpy', dace.eval(H * W), np.histogram, A,
                      num_bins)

    ref = np.histogram(A, bins=num_bins.get(), range=(0.0, 1.0))[0]
    diff = np.linalg.norm(ref[1:-1] - hist[1:-1])

    print("Difference:", diff)
    if diff > 1e-5:
        print("** Kernel")
        print(hist)
        print("** Reference")
        print(ref)
        print("Validation failed.")
    print("==== Program end ====")

    exit(0 if diff <= 1e-5 else 1)
示例#11
0
def run_spmv(size_w, size_h, num_nonzero, specialize):

    cols.set(size_w)
    rows.set(size_h)
    nnz.set(num_nonzero)

    print("Sparse Matrix-Vector Multiplication {}x{} "
          "({} non-zero elements, {}specialized)".format(
              cols.get(), rows.get(), nnz.get(),
              "not " if not specialize else ""))

    A_row = dace.ndarray([rows + 1], dtype=itype)
    A_col = dace.ndarray([nnz], dtype=itype)
    A_val = dace.ndarray([nnz], dtype=dtype)

    x = dace.ndarray([cols], dtype)
    b = dace.ndarray([rows], dtype)

    # Assuming uniform sparsity distribution across rows
    nnz_per_row = nnz.get() // rows.get()
    nnz_last_row = nnz_per_row + (nnz.get() % rows.get())
    if nnz_last_row > cols.get():
        print("Too many nonzeros per row")
        exit(1)

    # RANDOMIZE SPARSE MATRIX
    A_row[0] = itype(0)
    A_row[1:rows.get()] = itype(nnz_per_row)
    A_row[-1] = itype(nnz_last_row)
    A_row = np.cumsum(A_row, dtype=itype.type)

    # Fill column data
    for i in range(rows.get() - 1):
        A_col[nnz_per_row*i:nnz_per_row*(i+1)] = \
            np.sort(np.random.choice(cols.get(), nnz_per_row, replace=False))
    # Fill column data for last row
    A_col[nnz_per_row * (rows.get() - 1):] = np.sort(
        np.random.choice(cols.get(), nnz_last_row, replace=False))

    A_val[:] = np.random.rand(nnz.get()).astype(dtype.type)
    #########################

    x[:] = np.random.rand(cols.get()).astype(dtype.type)
    #b[:] = dtype(0)

    # Setup regression
    A_sparse = scipy.sparse.csr_matrix((A_val, A_col, A_row),
                                       shape=(rows.get(), cols.get()))

    spmv = make_sdfg(specialize)
    if specialize:
        spmv.specialize(dict(rows=rows, cols=cols, nnz=nnz))
    spmv(A_row=A_row,
         A_col=A_col,
         A_val=A_val,
         x=x,
         b=b,
         rows=rows,
         cols=cols,
         nnz=nnz)

    if dace.Config.get_bool("profiling"):
        dace.timethis("spmv", "scipy", 0, A_sparse.dot, x)

    diff = np.linalg.norm(A_sparse.dot(x) - b) / float(rows.get())
    print("Difference:", diff)
    if diff >= 1e-5:
        print("Validation failed.")
        print("Result:")
        print(b)
        print("Reference:")
        print(A_sparse.dot(x))
        print("Type \"debug\" to enter debugger, "
              "or any other string to quit (timeout in 10 seconds)")
        read, _, _ = select.select([sys.stdin], [], [], 10)
        if len(read) > 0 and sys.stdin.readline().strip().lower() == "debug":
            print("Entering debugger...")
            pdb.set_trace()
        else:
            print("Exiting...")
    print("==== Program end ====")
    if diff > 1e-5:
        raise RuntimeError("Validation failed.")

    return spmv
示例#12
0
    n = r ** k
    print('FFT on vector of length %d' % n)

    N.set(n)
    R.set(r)
    K.set(k)

    X = np.random.rand(n).astype(np.complex64) + 1j * np.random.rand(n).astype(np.complex64) 
    Y_own = np.zeros_like(X, dtype=np.complex64)


    own_fft(X, Y_own, N=N, K=K, R=R)
    Y_np = fft(X)
    
    if dace.Config.get_bool('profiling'):
        dace.timethis('FFT', 'numpy_fft', (n**2), fft, X)
    
    print("\n### RESULTS ###")
    print("X:", np.array_str(X, precision=2, suppress_small=True))
    print("Y_own: ", np.array_str(Y_own, precision=10, suppress_small=True))
    print("Y_np: ", np.array_str(Y_np, precision=10, suppress_small=True))
        
    eps = 1e-10
    diff = np.linalg.norm(Y_own - Y_np) / n
    if diff < eps:
        print("Difference:", diff)
    else:
        print("\033[91mDifference:", diff, "\033[0m")

    print("==== Program end ====")
    exit(0 if diff <= 1e-3 else 1)
示例#13
0
        b = a


if __name__ == "__main__":

    parser = argparse.ArgumentParser()
    parser.add_argument("W", type=int, nargs="?", default=64)
    parser.add_argument("H", type=int, nargs="?", default=64)
    args = vars(parser.parse_args())

    A = dace.ndarray([H, W], dtype=dace.float32)
    B = dace.ndarray([H, W], dtype=dace.float32)

    W.set(args["W"])
    H.set(args["H"])

    print('Transpose %dx%d' % (W.get(), H.get()))

    A[:] = np.random.rand(H.get(), W.get()).astype(dace.float32.type)
    B[:] = dace.float32(0)

    transpose(A, B)

    if dace.Config.get_bool('profiling'):
        dace.timethis('transpose', 'numpy', dace.eval(H * W), np.transpose, A)

    diff = np.linalg.norm(np.transpose(A) - B) / float(dace.eval(H * W))
    print("Difference:", diff)
    print("==== Program end ====")
    exit(0 if diff <= 1e-5 else 1)
示例#14
0
    gemm = gemm.to_sdfg()

    from dace.transformation.interstate import GPUTransformSDFG

    gemm.apply_transformations(GPUTransformSDFG,
                            options={'sequential_innermaps': False},
                            validate=True,
                            validate_all=False,
                            strict=True)
    gemm.validate()

    for m in [k for k, v in gemm.node(0).scope_dict().items() if isinstance(k, dace.nodes.MapEntry) and v is None]:
        m.map.schedule = dace.ScheduleType.GPU_Persistent
    
    for m in [k for k, v in gemm.node(0).scope_dict().items() if isinstance(k, dace.nodes.MapEntry) and v is not None]:
        m.map.schedule = dace.ScheduleType.GPU_Device

    gemm(A, B, C)

    if dace.Config.get_bool('profiling'):
        dace.timethis('gemm', 'numpy', (2 * M.get() * K.get() * N.get()),
                      np.dot, A, B, C_regression)
    else:
        np.dot(A, B, C_regression)

    diff = np.linalg.norm(C_regression - C) / (M.get() * N.get())
    print("Difference:", diff)
    print("==== Program end ====")
    exit(0 if diff <= 1e-5 else 1)
示例#15
0
文件: axpy.py 项目: cpenny42/dace
    # Initialize arrays: Randomize A and X, zero Y
    A = dace.float64(np.random.rand())
    X[:] = np.random.rand(N.get()).astype(dace.float64.type)
    Y[:] = np.random.rand(N.get()).astype(dace.float64.type)

    A_regression = np.float64()
    X_regression = np.ndarray([N.get()], dtype=np.float64)
    Y_regression = np.ndarray([N.get()], dtype=np.float64)
    A_regression = A
    X_regression[:] = X[:]
    Y_regression[:] = Y[:]

    if args["compile-only"]:
        dace.compile(axpy, A, X, Y)
    else:
        axpy(A, X, Y)

        c_axpy = sp.linalg.blas.get_blas_funcs('axpy',
                                               arrays=(X_regression,
                                                       Y_regression))
        if dace.Config.get_bool('profiling'):
            dace.timethis('axpy', contender, dace.eval(2 * N), c_axpy,
                          X_regression, Y_regression, N.get(), A_regression)
        else:
            c_axpy(X_regression, Y_regression, N.get(), A_regression)

    diff = np.linalg.norm(Y_regression - Y) / float(dace.eval(N))
    print("Difference:", diff)
    print("==== Program end ====")
    exit(0 if diff <= 1e-5 else 1)
示例#16
0
文件: gemm.py 项目: tbennun/dace
    parser = argparse.ArgumentParser()
    parser.add_argument("M", type=int, nargs="?", default=24)
    parser.add_argument("K", type=int, nargs="?", default=24)
    parser.add_argument("N", type=int, nargs="?", default=24)
    args = vars(parser.parse_args())

    M.set(args["M"])
    K.set(args["K"])
    N.set(args["N"])

    print('Matrix multiplication %dx%dx%d' % (M.get(), K.get(), N.get()))

    # Initialize arrays: Randomize A and B, zero C
    A = np.random.rand(M.get(), K.get()).astype(np.float64)
    B = np.random.rand(K.get(), N.get()).astype(np.float64)
    C = np.zeros([M.get(), N.get()], dtype=np.float64)
    C_regression = np.zeros_like(C)

    gemm(A, B, C)

    if dace.Config.get_bool('profiling'):
        dace.timethis('gemm', 'numpy', dace.eval(2 * M * K * N), np.dot, A, B,
                      C_regression)
    else:
        np.dot(A, B, C_regression)

    diff = np.linalg.norm(C_regression - C) / float(dace.eval(M * N))
    print("Difference:", diff)
    print("==== Program end ====")
    exit(0 if diff <= 1e-5 else 1)
示例#17
0
    print("Predicate-Based Filter. size={}, ratio={} ({}specialized)".format(
        N.get(), ratio, "" if args["specialize"] else "not "))

    A[:] = np.random.rand(N.get()).astype(dace.float32.type)
    B[:] = dace.float32(0)

    sdfg = make_sdfg(args["specialize"])
    sdfg.draw_to_file()
    if args["specialize"]:
        sdfg.specialize(dict(N=N))
        sdfg(A=A, B=B, outsize=outsize, ratio=ratio)
    else:
        sdfg(A=A, B=B, outsize=outsize, ratio=ratio, N=N)

    if dace.Config.get_bool('profiling'):
        dace.timethis('filter', 'numpy', 0, regression, A, ratio)

    filtered = regression(A, ratio)

    if len(filtered) != outsize[0]:
        print(
            "Difference in number of filtered items: %d (DaCe) vs. %d (numpy)"
            % (outsize[0], len(filtered)))
        totalitems = min(outsize[0], N.get())
        print('DaCe:', B[:totalitems].view(type=np.ndarray))
        print('Regression:', filtered.view(type=np.ndarray))
        exit(1)

    # Sort the outputs
    filtered = np.sort(filtered)
    B[:outsize[0]] = np.sort(B[:outsize[0]])
示例#18
0
        W.set(args["W"])

    print("Histogram {}x{} ({}specialized)".format(
        H.get(), W.get(), "" if args["specialize"] else "not "))

    A = dace.ndarray([H, W], dtype=dtype)
    hist = dace.ndarray([num_bins], dtype=dace.uint32)

    A[:] = np.random.rand(H.get(), W.get()).astype(dace.float32.type)
    hist[:] = dace.uint32(0)

    if args["specialize"]:
        histogram(A=A, hist=hist)
    else:
        histogram(A=A, H=H, W=W, hist=hist)

    if dace.Config.get_bool('profiling'):
        dace.timethis('histogram', 'numpy', (H.get() * W.get()), np.histogram,
                      A, num_bins)

    diff = np.linalg.norm(
        np.histogram(A, bins=num_bins.get(), range=(0.0, 1.0))[0][1:-1] -
        hist[1:-1])

    print("Difference:", diff)
    if diff > 1e-5:
        print("Validation failed.")
    print("==== Program end ====")

    exit(0 if diff <= 1e-5 else 1)