def preprocess_img(img, target_image_size):
    s = min(img.size)        
    r = target_image_size / s
    s = (round(r * img.size[1]), round(r * img.size[0]))
    img = TF.resize(img, s, interpolation=PIL.Image.LANCZOS)
    # img = TF.center_crop(img, output_size=2 * [target_image_size])
    img = torch.unsqueeze(T.ToTensor()(img), 0)
    return map_pixels(img)
def preprocessing(img):
    s = min(img.size)
    if s < target_size:
        raise ValueError(f'min dim for image')
    r = target_size / s
    s = round(r * img.size[1]),round(r * img.size[0])
    img = TF.resize(img,s,interpolation=PIL.Image.LANCZOS)
    img = TF.center_crop(img,output_size=2*[target_size])
    img = torch.unsqueeze(T.ToTensor()(img),0)
    return map_pixels(img)
示例#3
0
def preprocess(img):
    min_img_dim = min(img.size)

    if min_img_dim < target_img_size:
        raise ValueError(f'min dim for img {min_img_dim} < {target_img_size}')

    img_ratio = target_img_size / min_img_dim
    min_img_dim = (round(img_ratio * img.size[1]),
                   round(img_ratio * img.size[0]))
    img = TF.resize(img, min_img_dim, interpolation=PIL.Image.LANCZOS)
    img = TF.center_crop(img, output_size=2 * [target_img_size])
    img = torch.unsqueeze(T.ToTensor()(img), 0)
    return map_pixels(img)