assert len(ds) > 0, 'folder does not contain any images' print(f'{len(ds)} images found for training') def save_model(path): save_obj = { 'hparams': vae_params, 'weights': vae.state_dict() } torch.save(save_obj, path) # optimizer opt = Adam(vae.parameters(), lr = LEARNING_RATE) sched = ExponentialLR(optimizer = opt, gamma = LR_DECAY_RATE) # weights & biases experiment tracking import wandb model_config = dict( num_tokens = NUM_TOKENS, smooth_l1_loss = SMOOTH_L1_LOSS, num_resnet_blocks = NUM_RESNET_BLOCKS, kl_loss_weight = KL_LOSS_WEIGHT ) run = wandb.init( project = 'dalle_train_vae',
vae = DiscreteVAE( image_size=IMAGE_SIZE, num_layers= 3, # number of downsamples - ex. 256 / (2 ** 3) = (32 x 32 feature map) num_tokens= 8192, # number of visual tokens. in the paper, they used 8192, but could be smaller for downsized projects codebook_dim=512, # codebook dimension hidden_dim=64, # hidden dimension num_resnet_blocks=1, # number of resnet blocks temperature= 0.9, # gumbel softmax temperature, the lower this is, the harder the discretization straight_through= False # straight-through for gumbel softmax. unclear if it is better one way or the other ).cuda() optimizerVAE = torch.optim.Adam(vae.parameters(), lr=learning_rate) """ text = torch.randint(0, NUM_TOKENS, (BATCH_SIZE, TEXTSEQLEN)) images = torch.randn(BATCH_SIZE, 3, IMAGE_SIZE, IMAGE_SIZE) mask = torch.ones_like(text).bool() """ cap = dset.CocoCaptions( root='./coco/images', annFile='./coco/annotations/captions_val2014.json', transform=transforms.Compose([ #transforms.RandomCrop((IMAGE_SIZE,IMAGE_SIZE),pad_if_needed=True), #transforms.Grayscale(), transforms.Resize((IMAGE_SIZE, IMAGE_SIZE), Image.BILINEAR), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
transforms.Resize(imgSize), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) #(0.267, 0.233, 0.234)) ]) train_set = datasets.ImageFolder(opt.dataPath, transform=t, target_transform=None) train_loader = DataLoader(dataset=train_set, num_workers=1, batch_size=batchSize, shuffle=True) optimizer = optim.Adam(vae.parameters(), lr=lr) def clampWeights(m): if type(m) != nn.BatchNorm2d and type(m) != nn.Sequential: for p in m.parameters(): p.data.clamp_(-opt.clip, opt.clip) if temperature_scheduling: vae.temperature = opt.temperature dk = 0.7**(1 / len(train_loader)) print('Scale Factor:', dk) for epoch in range(start_epoch, start_epoch + n_epochs):
if distr_backend.is_root_worker(): print(f'{len(ds)} images found for training') def save_model(path): if not distr_backend.is_root_worker(): return save_obj = {'hparams': vae_params, 'weights': vae.state_dict()} torch.save(save_obj, path) # optimizer opt = Adam(vae.parameters(), lr=LEARNING_RATE) sched = ExponentialLR(optimizer=opt, gamma=LR_DECAY_RATE) if distr_backend.is_root_worker(): # weights & biases experiment tracking import wandb model_config = dict(num_tokens=NUM_TOKENS, smooth_l1_loss=SMOOTH_L1_LOSS, num_resnet_blocks=NUM_RESNET_BLOCKS, kl_loss_weight=KL_LOSS_WEIGHT) run = wandb.init(project='dalle_train_vae', job_type='train_model', config=model_config)
def main(): parser = get_parser() args = parser.parse_args() if not torch.cuda.is_available(): raise ValueError( "The script requires CUDA support, but CUDA not available") args.rank = -1 args.world_size = 1 if args.model_parallel: args.deepspeed = False cfg = { "microbatches": args.num_microbatches, "placement_strategy": args.placement_strategy, "pipeline": args.pipeline, "optimize": args.optimize, "partitions": args.num_partitions, "horovod": args.horovod, "ddp": args.ddp, } smp.init(cfg) torch.cuda.set_device(smp.local_rank()) args.rank = smp.dp_rank() args.world_size = smp.size() else: # initialize deepspeed print(f"args.deepspeed : {args.deepspeed}") deepspeed_utils.init_deepspeed(args.deepspeed) if deepspeed_utils.is_root_worker(): args.rank = 0 if args.seed is not None: random.seed(args.seed) torch.manual_seed(args.seed + args.rank) np.random.seed(args.seed) torch.cuda.manual_seed_all(args.seed) # args.LEARNING_RATE = args.LEARNING_RATE * float(args.world_size) cudnn.deterministic = True if cudnn.deterministic: warnings.warn('You have chosen to seed training. ' 'This will turn on the CUDNN deterministic setting, ' 'which can slow down your training considerably! ' 'You may see unexpected behavior when restarting ' 'from checkpoints.') args.kwargs = {'num_workers': args.num_worker, 'pin_memory': True} device = torch.device("cuda") logger.debug(f"args.image_folder : {args.image_folder}") logger.debug(f"args.rank : {args.rank}") ## SageMaker try: if os.environ.get('SM_MODEL_DIR') is not None: args.model_dir = os.environ.get('SM_MODEL_DIR') # args.output_dir = os.environ.get('SM_OUTPUT_DATA_DIR') args.image_folder = os.environ.get('SM_CHANNEL_TRAINING') except: logger.debug("not SageMaker") pass IMAGE_SIZE = args.image_size IMAGE_PATH = args.image_folder EPOCHS = args.EPOCHS BATCH_SIZE = args.BATCH_SIZE LEARNING_RATE = args.LEARNING_RATE LR_DECAY_RATE = args.LR_DECAY_RATE NUM_TOKENS = args.NUM_TOKENS NUM_LAYERS = args.NUM_LAYERS NUM_RESNET_BLOCKS = args.NUM_RESNET_BLOCKS SMOOTH_L1_LOSS = args.SMOOTH_L1_LOSS EMB_DIM = args.EMB_DIM HID_DIM = args.HID_DIM KL_LOSS_WEIGHT = args.KL_LOSS_WEIGHT STARTING_TEMP = args.STARTING_TEMP TEMP_MIN = args.TEMP_MIN ANNEAL_RATE = args.ANNEAL_RATE NUM_IMAGES_SAVE = args.NUM_IMAGES_SAVE # transform = Compose( # [ # RandomResizedCrop(args.image_size, args.image_size), # OneOf( # [ # IAAAdditiveGaussianNoise(), # GaussNoise(), # ], # p=0.2 # ), # VerticalFlip(p=0.5), # OneOf( # [ # MotionBlur(p=.2), # MedianBlur(blur_limit=3, p=0.1), # Blur(blur_limit=3, p=0.1), # ], # p=0.2 # ), # OneOf( # [ # CLAHE(clip_limit=2), # IAASharpen(), # IAAEmboss(), # RandomBrightnessContrast(), # ], # p=0.3 # ), # HueSaturationValue(p=0.3), # # Normalize( # # mean=[0.485, 0.456, 0.406], # # std=[0.229, 0.224, 0.225], # # ) # ], # p=1.0 # ) transform = T.Compose([ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), T.Resize(IMAGE_SIZE), T.CenterCrop(IMAGE_SIZE), T.ToTensor() ]) sampler = None dl = None # data logger.debug(f"IMAGE_PATH : {IMAGE_PATH}") # ds = AlbumentationImageDataset( # IMAGE_PATH, # transform=transform, # args=args # ) ds = ImageFolder( IMAGE_PATH, transform=transform, ) if args.model_parallel and (args.ddp or args.horovod) and smp.dp_size() > 1: partitions_dict = { f"{i}": 1 / smp.dp_size() for i in range(smp.dp_size()) } ds = SplitDataset(ds, partitions=partitions_dict) ds.select(f"{smp.dp_rank()}") dl = DataLoader(ds, BATCH_SIZE, shuffle=True, drop_last=args.model_parallel, **args.kwargs) vae_params = dict(image_size=IMAGE_SIZE, num_layers=NUM_LAYERS, num_tokens=NUM_TOKENS, codebook_dim=EMB_DIM, hidden_dim=HID_DIM, num_resnet_blocks=NUM_RESNET_BLOCKS) vae = DiscreteVAE(**vae_params, smooth_l1_loss=SMOOTH_L1_LOSS, kl_div_loss_weight=KL_LOSS_WEIGHT).to(device) # optimizer opt = Adam(vae.parameters(), lr=LEARNING_RATE) sched = ExponentialLR(optimizer=opt, gamma=LR_DECAY_RATE) if args.model_parallel: import copy dummy_codebook = copy.deepcopy(vae.codebook) dummy_decoder = copy.deepcopy(vae.decoder) vae = smp.DistributedModel(vae) scaler = smp.amp.GradScaler() opt = smp.DistributedOptimizer(opt) if args.partial_checkpoint: args.checkpoint = smp.load(args.partial_checkpoint, partial=True) vae.load_state_dict(args.checkpoint["model_state_dict"]) opt.load_state_dict(args.checkpoint["optimizer_state_dict"]) elif args.full_checkpoint: args.checkpoint = smp.load(args.full_checkpoint, partial=False) vae.load_state_dict(args.checkpoint["model_state_dict"]) opt.load_state_dict(args.checkpoint["optimizer_state_dict"]) assert len(ds) > 0, 'folder does not contain any images' if (not args.model_parallel) and args.rank == 0: print(f'{len(ds)} images found for training') # weights & biases experiment tracking # import wandb model_config = dict(num_tokens=NUM_TOKENS, smooth_l1_loss=SMOOTH_L1_LOSS, num_resnet_blocks=NUM_RESNET_BLOCKS, kl_loss_weight=KL_LOSS_WEIGHT) # run = wandb.init( # project = 'dalle_train_vae', # job_type = 'train_model', # config = model_config # ) def save_model(path): if not args.rank == 0: return save_obj = {'hparams': vae_params, 'weights': vae.state_dict()} torch.save(save_obj, path) # distribute with deepspeed if not args.model_parallel: deepspeed_utils.check_batch_size(BATCH_SIZE) deepspeed_config = {'train_batch_size': BATCH_SIZE} (distr_vae, opt, dl, sched) = deepspeed_utils.maybe_distribute( args=args, model=vae, optimizer=opt, model_parameters=vae.parameters(), training_data=ds if args.deepspeed else dl, lr_scheduler=sched, config_params=deepspeed_config, ) try: # Rubik: Define smp.step. Return any tensors needed outside. @smp.step def train_step(vae, images, temp): # logger.debug(f"args.amp : {args.amp}") with autocast(enabled=(args.amp > 0)): loss, recons = vae(images, return_loss=True, return_recons=True, temp=temp) scaled_loss = scaler.scale(loss) if args.amp else loss vae.backward(scaled_loss) # torch.nn.utils.clip_grad_norm_(vae.parameters(), 5) return loss, recons @smp.step def get_codes_step(vae, images, k): images = images[:k] logits = vae.forward(images, return_logits=True) codebook_indices = logits.argmax(dim=1).flatten(1) return codebook_indices def hard_recons_step(dummy_decoder, dummy_codebook, codebook_indices): from functools import partial for module in dummy_codebook.modules(): method = smp_state.patch_manager.get_original_method( "forward", type(module)) module.forward = partial(method, module) image_embeds = dummy_codebook.forward(codebook_indices) b, n, d = image_embeds.shape h = w = int(sqrt(n)) image_embeds = rearrange(image_embeds, 'b (h w) d -> b d h w', h=h, w=w) for module in dummy_decoder.modules(): method = smp_state.patch_manager.get_original_method( "forward", type(module)) module.forward = partial(method, module) hard_recons = dummy_decoder.forward(image_embeds) return hard_recons except: pass # starting temperature global_step = 0 temp = STARTING_TEMP for epoch in range(EPOCHS): ## batch_time = util.AverageMeter('Time', ':6.3f') data_time = util.AverageMeter('Data', ':6.3f') losses = util.AverageMeter('Loss', ':.4e') top1 = util.AverageMeter('Acc@1', ':6.2f') top5 = util.AverageMeter('Acc@5', ':6.2f') progress = util.ProgressMeter( len(dl), [batch_time, data_time, losses, top1, top5], prefix="Epoch: [{}]".format(epoch)) vae.train() start = time.time() for i, (images, _) in enumerate(dl): images = images.to(device, non_blocking=True) opt.zero_grad() if args.model_parallel: loss, recons = train_step(vae, images, temp) # Rubik: Average the loss across microbatches. loss = loss.reduce_mean() recons = recons.reduce_mean() else: loss, recons = distr_vae(images, return_loss=True, return_recons=True, temp=temp) if (not args.model_parallel) and args.deepspeed: # Gradients are automatically zeroed after the step distr_vae.backward(loss) distr_vae.step() elif args.model_parallel: if args.amp: scaler.step(opt) scaler.update() else: # some optimizers like adadelta from PT 1.8 dont like it when optimizer.step is called with no param if len(list(vae.local_parameters())) > 0: opt.step() else: loss.backward() opt.step() logs = {} if i % 10 == 0: if args.rank == 0: # if deepspeed_utils.is_root_worker(): k = NUM_IMAGES_SAVE with torch.no_grad(): if args.model_parallel: model_dict = vae.state_dict() model_dict_updated = {} for key, val in model_dict.items(): if "decoder" in key: key = key.replace("decoder.", "") elif "codebook" in key: key = key.replace("codebook.", "") model_dict_updated[key] = val dummy_decoder.load_state_dict(model_dict_updated, strict=False) dummy_codebook.load_state_dict(model_dict_updated, strict=False) codes = get_codes_step(vae, images, k) codes = codes.reduce_mean().to(torch.long) hard_recons = hard_recons_step( dummy_decoder, dummy_codebook, codes) else: codes = vae.get_codebook_indices(images[:k]) hard_recons = vae.decode(codes) images, recons = map(lambda t: t[:k], (images, recons)) images, recons, hard_recons, codes = map( lambda t: t.detach().cpu(), (images, recons, hard_recons, codes)) images, recons, hard_recons = map( lambda t: make_grid(t.float(), nrow=int(sqrt(k)), normalize=True, range=(-1, 1)), (images, recons, hard_recons)) # logs = { # **logs, # 'sample images': wandb.Image(images, caption = 'original images'), # 'reconstructions': wandb.Image(recons, caption = 'reconstructions'), # 'hard reconstructions': wandb.Image(hard_recons, caption = 'hard reconstructions'), # 'codebook_indices': wandb.Histogram(codes), # 'temperature': temp # } if args.model_parallel: filename = f'{args.model_dir}/vae.pt' if smp.dp_rank == 0: if args.save_full_model: model_dict = vae.state_dict() opt_dict = opt.state_dict() smp.save( { "model_state_dict": model_dict, "optimizer_state_dict": opt_dict }, filename, partial=False, ) else: model_dict = vae.local_state_dict() opt_dict = opt.local_state_dict() smp.save( { "model_state_dict": model_dict, "optimizer_state_dict": opt_dict }, filename, partial=True, ) smp.barrier() else: save_model(f'{args.model_dir}/vae.pt') # wandb.save(f'{args.model_dir}/vae.pt') # temperature anneal temp = max(temp * math.exp(-ANNEAL_RATE * global_step), TEMP_MIN) # lr decay sched.step() # Collective loss, averaged if args.model_parallel: avg_loss = loss.detach().clone() # print("args.world_size : {}".format(args.world_size)) avg_loss /= args.world_size else: avg_loss = deepspeed_utils.average_all(loss) if args.rank == 0: if i % 100 == 0: lr = sched.get_last_lr()[0] print(epoch, i, f'lr - {lr:6f}, loss - {avg_loss.item()},') logs = { **logs, 'epoch': epoch, 'iter': i, 'loss': avg_loss.item(), 'lr': lr } # wandb.log(logs) global_step += 1 if args.rank == 0: # Every print_freq iterations, check the loss, accuracy, and speed. # For best performance, it doesn't make sense to print these metrics every # iteration, since they incur an allreduce and some host<->device syncs. # Measure accuracy # prec1, prec5 = util.accuracy(output, target, topk=(1, 5)) # to_python_float incurs a host<->device sync losses.update(util.to_python_float(loss), images.size(0)) # top1.update(util.to_python_float(prec1), images.size(0)) # top5.update(util.to_python_float(prec5), images.size(0)) # Waiting until finishing operations on GPU (Pytorch default: async) torch.cuda.synchronize() batch_time.update((time.time() - start) / args.log_interval) end = time.time() print( 'Epoch: [{0}][{1}/{2}] ' 'Train_Time={batch_time.val:.3f}: avg-{batch_time.avg:.3f}, ' 'Train_Speed={3:.3f} ({4:.3f}), ' 'Train_Loss={loss.val:.10f}:({loss.avg:.4f}),'.format( epoch, i, len(dl), args.world_size * BATCH_SIZE / batch_time.val, args.world_size * BATCH_SIZE / batch_time.avg, batch_time=batch_time, loss=losses)) # if deepspeed_utils.is_root_worker(): # save trained model to wandb as an artifact every epoch's end # model_artifact = wandb.Artifact('trained-vae', type = 'model', metadata = dict(model_config)) # model_artifact.add_file(f'{args.model_dir}/vae.pt') # run.log_artifact(model_artifact) if args.rank == 0: # if deepspeed_utils.is_root_worker(): # save final vae and cleanup if args.model_parallel: logger.debug('save model_parallel') else: save_model(os.path.join(args.model_dir, 'vae-final.pt')) # wandb.save(f'{args.model_dir}/vae-final.pt') # model_artifact = wandb.Artifact('trained-vae', type = 'model', metadata = dict(model_config)) # model_artifact.add_file(f'{args.model_dir}/vae-final.pt') # run.log_artifact(model_artifact) # wandb.finish() if args.model_parallel: if args.assert_losses: if args.horovod or args.ddp: # SM Distributed: If using data parallelism, gather all losses across different model # replicas and check if losses match. losses = smp.allgather(loss, smp.DP_GROUP) for l in losses: print(l) assert math.isclose(l, losses[0]) assert loss < 0.18 else: assert loss < 0.08 smp.barrier() print("SMP training finished successfully")