def test_1(self): G = Group(5, 'V = I; I') Z = np.ones(5) DenseConnection(Z, G('I'), 1) DenseConnection(Z, G('I'), 2) G.run() assert np_equal(3 * np.ones(5), G('V'))
def test_2(self): kernel = np.ones(3) * np.NaN C = DenseConnection(np.ones(3), np.ones(3), kernel, equation='dW/dt = 1') C.evaluate(dt=.1) assert np_equal(C.weights, np.zeros((3, 3)))
def test_1(self): kernel = np.ones(1) C = DenseConnection(np.ones(3), np.ones(3), kernel, equation='dW/dt = 1') C.evaluate(dt=.1) assert np_equal(C.weights, np.identity(3) * 1.1)
def test_3(self): kernel = np.ones(3) kernel[1] = np.NaN C = DenseConnection(np.ones(3), np.ones(3), kernel, equation = 'dW/dt = 1') C.evaluate(dt=.1) assert np_equal(C.weights, np.array([[0,1,0], [1,0,1], [0,1,0]])*1.1)
def test_3(self): kernel = np.ones(3) kernel[1] = np.NaN C = DenseConnection(np.ones(3), np.ones(3), kernel, equation='dW/dt = 1') C.evaluate(dt=.1) assert np_equal(C.weights, np.array([[0, 1, 0], [1, 0, 1], [0, 1, 0]]) * 1.1)
def test_4(self): src = np.ones((3, )) dst = zeros((3, ), 'V=I; I') kernel = np.ones(1) C = DenseConnection(src, dst('I'), kernel, equation='dW/dt = post.I') dst.run(dt=0.1) assert np_equal(C.weights, np.identity(3) * 1.1)
def test_5(self): n = 10 Z = np.random.random(n) K = np.random.random(n) Z1 = DenseConnection(Z,Z,K,toric=True).output() Z2 = SharedConnection(Z,Z,K,toric=True,fft=False).output() Z3 = SharedConnection(Z,Z,K,toric=True,fft=True).output() Z4 = convolve(Z, K[::-1], mode='wrap') assert np_equal(Z1,Z4) assert np_equal(Z2,Z4) assert np_equal(Z3,Z4)
def test_7(self): n = 9 Z = np.random.random(n) K = np.random.random(n//2) Z1 = DenseConnection(Z,Z,K,toric=False).output() Z2 = SharedConnection(Z,Z,K,toric=False,fft=False).output() Z3 = SharedConnection(Z,Z,K,toric=False,fft=True).output() Z4 = convolve(Z, K[::-1], mode='constant') assert np_equal(Z1,Z4) assert np_equal(Z2,Z4) assert np_equal(Z3,Z4)
def test_12(self): n = 10 Z = np.random.random((n,n)) K = np.random.random((2*n,2*n)) Z1 = DenseConnection(Z,Z,K,toric=False).output() Z2 = SparseConnection(Z,Z,K,toric=False).output() Z3 = SharedConnection(Z,Z,K,toric=False,fft=False).output() Z4 = SharedConnection(Z,Z,K,toric=False,fft=True).output() Z5 = convolve(Z, K[::-1,::-1], mode='constant') assert np_equal(Z1,Z5) assert np_equal(Z2,Z5) assert np_equal(Z3,Z5) assert np_equal(Z4,Z5)
def test_1(self): n = 9 Z = np.random.random((n,n)) K = np.random.random((n//2,n//2)) Z1 = DenseConnection(Z,Z,K,toric=True).output() Z2 = SparseConnection(Z,Z,K,toric=True).output() Z3 = SharedConnection(Z,Z,K,toric=True,fft=False).output() Z4 = SharedConnection(Z,Z,K,toric=True,fft=True).output() Z5 = convolve(Z, K[::-1,::-1], mode='wrap') assert np_equal(Z1,Z5) assert np_equal(Z2,Z5) assert np_equal(Z3,Z5) assert np_equal(Z4,Z5)
def test_6(self): n = 10 Z = np.random.random((n,n)) K = np.random.random((2*n,2*n)) Z1 = DenseConnection(Z,Z,K,toric=True).output() Z2 = SparseConnection(Z,Z,K,toric=True).output() Z3 = SharedConnection(Z,Z,K,toric=True,fft=False).output() Z4 = SharedConnection(Z,Z,K,toric=True,fft=True).output() K_ = K[5:15,5:15] Z5 = convolve(Z, K_[::-1,::-1], mode='wrap') assert np_equal(Z1,Z5) assert np_equal(Z2,Z5) assert np_equal(Z3,Z5) assert np_equal(Z4,Z5)
def test_3(self): net = Network(Clock(0.0, 1.0, 0.001)) src = Group((1, ), 'dV/dt=1') src[...] = 1 dst = Group((1, ), 'I') dst[...] = 0 kernel = np.ones(1) C = DenseConnection(src('V'), dst('I'), kernel) net.append(src) net.append(dst) V, I = [], [] @net.clock.every(0.1, order=-1) def do(t): V.append(src['V'][0]) I.append(dst['I'][0]) net.run(time=1.0, dt=0.1) assert np_equal( np.array(V), [1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0]) assert np_equal( np.array(I), [0.0, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9])
def test_2(self): kernel = np.ones(3)*np.NaN C = DenseConnection(np.ones(3), np.ones(3), kernel, equation = 'dW/dt = 1') C.evaluate(dt=.1) assert np_equal(C.weights, np.zeros((3,3)))
def test_1(self): kernel = np.ones(1) C = DenseConnection(np.ones(3), np.ones(3), kernel, equation = 'dW/dt = 1') C.evaluate(dt=.1) assert np_equal(C.weights, np.identity(3)*1.1)