示例#1
0
def HMMs(stepper="Tay2", resolution="Low", R=1):
    """Define the various HMMs used."""
    # Use small version of L96. Has 4 non-stable Lyapunov exponents.
    Nx = 10

    # Time sequence
    # Grudzien'2020 uses the below chronology with Ko=25000, BurnIn=5000.
    t = modelling.Chronology(dt=0.005, dto=.1, T=30, Tplot=Tplot, BurnIn=10)
    if resolution == "High":
        t.dt = 0.001
    elif stepper != "Tay2":
        t.dt = 0.01

    # Dynamical operator
    Dyn = {'M': Nx, 'model': steppers(stepper)}

    # (Random) initial condition
    X0 = modelling.GaussRV(mu=x0(Nx), C=0.001)

    # Observation operator
    jj = range(Nx)  # obs_inds
    Obs = modelling.partial_Id_Obs(Nx, jj)
    Obs['noise'] = R

    return modelling.HiddenMarkovModel(Dyn, Obs, t, X0)
示例#2
0
"""Demonstrate the Lorenz-96 model."""

# For a deeper introduction, see
# "DA-tutorials/T4 - Dynamical systems, chaos, Lorenz.ipynb"

from matplotlib import pyplot as plt
from numpy import eye

import dapper as dpr
from dapper.mods.Lorenz96 import step, x0
from dapper.tools.viz import amplitude_animation

simulator = dpr.with_recursion(step, prog="Simulating")

x0 = x0(40)
E0 = x0 + 1e-3*eye(len(x0))[:3]

dt = 0.05
xx = simulator(E0, k=500, t=0, dt=dt)

ani = amplitude_animation(xx, dt=dt, interval=70)

plt.show()
示例#3
0
`bib.bocquet2011ensemble`, `bib.sakov2012iterative`,
`bib.bocquet2015expanding`, `bib.bocquet2013joint`.
"""

import numpy as np

import dapper.mods as modelling
from dapper.mods.Lorenz96 import LPs, Tplot, dstep_dx, step, x0
from dapper.tools.localization import nd_Id_localization

# Sakov uses K=300000, BurnIn=1000*0.05
tseq = modelling.Chronology(0.05, dko=1, Ko=1000, Tplot=Tplot, BurnIn=2*Tplot)

Nx = 40
x0 = x0(Nx)

Dyn = {
    'M': Nx,
    'model': step,
    'linear': dstep_dx,
    'noise': 0,
}

X0 = modelling.GaussRV(mu=x0, C=0.001)

jj = np.arange(Nx)  # obs_inds
Obs = modelling.partial_Id_Obs(Nx, jj)
Obs['noise'] = 1
Obs['localizer'] = nd_Id_localization((Nx,), (2,))
示例#4
0
文件: demo.py 项目: yumengch/DAPPER
"""Demonstrate the Lorenz-96 model."""

# For a deeper introduction, see
# "DA-tutorials/T4 - Dynamical systems, chaos, Lorenz.ipynb"

from matplotlib import pyplot as plt
from numpy import eye

import dapper.mods as modelling
from dapper.mods.Lorenz96 import step, x0
from dapper.tools.viz import amplitude_animation

simulator = modelling.with_recursion(step, prog="Simulating")

M = 40
N = 3

x0 = x0(M)
E0 = x0 + 1e-3 * eye(M)[:N]

dt = 0.05
xx = simulator(E0, k=500, t=0, dt=dt)

ani = amplitude_animation(xx, dt=dt, interval=70)

plt.show()
示例#5
0
model.Force = 8.17
tseq = modelling.Chronology(0.01, dko=10, K=4000, Tplot=10, BurnIn=10)

Nx = 1000

Dyn = {
    'M': Nx,
    'model': step,
    # It's not clear from the paper whether Q=0.5 or 0.25.
    # But I'm pretty sure it's applied each dto (not dt).
    'noise': 0.25 / tseq.dto,
    # 'noise': 0.5 / t.dto,
}

X0 = modelling.GaussRV(mu=x0(Nx), C=0.001)

jj = linspace_int(Nx, Nx // 4, periodic=True)
Obs = modelling.partial_Id_Obs(Nx, jj)
Obs['noise'] = 0.1**2
Obs['localizer'] = nd_Id_localization((Nx, ), (1, ), jj, periodic=True)

HMM = modelling.HiddenMarkovModel(Dyn, Obs, tseq, X0)

HMM.liveplotters = LPs(jj)

# Pinheiro et al. use
# - N = 30, but this is only really stated for their PF.
# - loc-rad = 4, but don't state its definition, nor the exact tapering function.
# - infl-factor 1.05, but I'm not sure if it's squared or not.
#