def test_DARCDesign_delayed_and_risky_instantiation(): D = DesignSpaceBuilder(DA=[0.], DB=[7., 30, 30 * 6, 365], PA=[1.], PB=[0.1, 0.25, 0.5, 0.75, 0.8, 0.9, 0.99], RA=list(100 * np.linspace(0.05, 0.95, 91)), RB=[100.]).build() design_thing = BayesianAdaptiveDesignGeneratorDARC(D, max_trials=3) assert isinstance(design_thing, BayesianAdaptiveDesignGeneratorDARC)
def test_DARCDesign_risky_initial_design_space(): D = DesignSpaceBuilder(DA=[0], DB=[0], PA=[1], PB=[0.1, 0.25, 0.5, 0.75, 0.8, 0.9, 0.99], RA=list(100 * np.linspace(0.05, 0.95, 91)), RB=[100]).build() design_thing = BayesianAdaptiveDesignGeneratorDARC(D, max_trials=3) n_designs = design_thing.all_possible_designs.shape[0] assert n_designs > 10
def test_DARCDesign_delay_magnitude_effect_instantiation(): '''When we are investigating the magnitide effect, we want to ask for a reasonable range of DB values. When we do this, we are going to provide a vector of proportions (RA_over_RB) which will be translated into actual RA values. ''' D = DesignSpaceBuilder(RB=[10., 100., 1_000.], RA_over_RB=np.linspace(0.05, 0.95, 19).tolist()).build() design_thing = BayesianAdaptiveDesignGeneratorDARC(D, max_trials=3) assert isinstance(design_thing, BayesianAdaptiveDesignGeneratorDARC)
def test_model_design_integration_delayed(model): '''Tests integration of model and design. Basically conducts Parameter Estimation''' D = DesignSpaceBuilder(RA=list(100 * np.linspace(0.05, 0.95, 19))).build() design_thing = BayesianAdaptiveDesignGeneratorDARC(D, max_trials=max_trials) model = model(n_particles=n_particles) model = model.generate_faux_true_params() simulated_experiment_trial_loop(design_thing, model)
def test_DARCDesign_delay_instantiation(): D = DesignSpaceBuilder(RA=list(100 * np.linspace(0.05, 0.95, 91)), RB=[100.]).build() design_thing = BayesianAdaptiveDesignGeneratorDARC(D, max_trials=3) assert isinstance(design_thing, BayesianAdaptiveDesignGeneratorDARC)
def test_DARCDesign_default_instantiation(): D = DesignSpaceBuilder(RA=list(100 * np.linspace(0.05, 0.95, 91))).build() design_thing = BayesianAdaptiveDesignGeneratorDARC(D) assert isinstance(design_thing, BayesianAdaptiveDesignGeneratorDARC)
def test_DARCDesign_delay_initial_design_space(): D = DesignSpaceBuilder(RA=list(100 * np.linspace(0.05, 0.95, 91))).build() design_thing = BayesianAdaptiveDesignGeneratorDARC(D) n_designs = design_thing.all_possible_designs.shape[0] assert n_designs > 10
def test_DARC_BAD_alt_frontenddelay(): D = DesignSpaceBuilder.frontend_delay().build() design_thing = BayesianAdaptiveDesignGeneratorDARC(D, max_trials=3) assert isinstance(design_thing, BayesianAdaptiveDesignGeneratorDARC)
def test_DARC_BAD_alt_delaymag(): D = DesignSpaceBuilder.delay_magnitude_effect().build() design_thing = BayesianAdaptiveDesignGeneratorDARC(D, max_trials=3) assert isinstance(design_thing, BayesianAdaptiveDesignGeneratorDARC)
def act_on_choices(desired_experiment_type, desired_model, expInfo): # create desired experiment object ======================================== if desired_experiment_type == 'delayed (Bayesian Adaptive Design)': from darc.designs import BayesianAdaptiveDesignGeneratorDARC, DesignSpaceBuilder # regular, or magnitude effect if (desired_model is 'HyperbolicMagnitudeEffect') or (desired_model is 'ExponentialMagnitudeEffect'): D = DesignSpaceBuilder.delay_magnitude_effect().build() design_thing = BayesianAdaptiveDesignGeneratorDARC(D, max_trials=expInfo['trials']) else: D = DesignSpaceBuilder.delayed().build() design_thing = BayesianAdaptiveDesignGeneratorDARC(D, max_trials=expInfo['trials']) # import the appropriate set of models from darc.delayed import models elif desired_experiment_type == 'delayed (Kirby 2009)': from darc.delayed.designs import Kirby2009 design_thing = Kirby2009() from darc.delayed import models elif desired_experiment_type == 'delayed (Griskevicius et al, 2011)': from darc.delayed.designs import Griskevicius2011 design_thing = Griskevicius2011() from darc.delayed import models elif desired_experiment_type == 'delayed (Frye et al, 2016)': from darc.delayed.designs import Frye design_thing = Frye() from darc.delayed import models elif desired_experiment_type == 'delayed (Du, Green, & Myerson, 2002)': from darc.delayed.designs import DuGreenMyerson2002 design_thing = DuGreenMyerson2002() from darc.delayed import models elif desired_experiment_type == 'risky (Du, Green, & Myerson, 2002)': from darc.risky.designs import DuGreenMyerson2002 design_thing = DuGreenMyerson2002() from darc.risky import models elif desired_experiment_type == 'risky (Griskevicius et al, 2011)': from darc.risky.designs import Griskevicius2011 design_thing = Griskevicius2011() from darc.risky import models elif desired_experiment_type == 'risky (Bayesian Adaptive Design)': from darc.designs import BayesianAdaptiveDesignGeneratorDARC, DesignSpaceBuilder # create an appropriate design object D = DesignSpaceBuilder.risky().build() design_thing = BayesianAdaptiveDesignGeneratorDARC(D, max_trials=expInfo['trials']) # import the appropriate set of models from darc.risky import models elif desired_experiment_type == 'delayed and risky (Bayesian Adaptive Design)': from darc.designs import BayesianAdaptiveDesignGeneratorDARC # create an appropriate design object D = DesignSpaceBuilder.delayed_and_risky().build() design_thing = BayesianAdaptiveDesignGeneratorDARC(D, max_trials=expInfo['trials']) # import the appropriate set of models from darc.delayed_and_risky import models # chose the desired model here ============================================ if desired_model is 'Hyperbolic': model = models.Hyperbolic(n_particles=expInfo['particles']) elif desired_model is 'Exponential': model = models.Exponential(n_particles=expInfo['particles']) elif desired_model is 'MyersonHyperboloid': model = models.MyersonHyperboloid(n_particles=expInfo['particles']) elif desired_model is 'ModifiedRachlin': model = models.ModifiedRachlin(n_particles=expInfo['particles']) elif desired_model is 'HyperbolicMagnitudeEffect': model = models.HyperbolicMagnitudeEffect(n_particles=expInfo['particles']) elif desired_model is 'ExponentialMagnitudeEffect': model = models.ExponentialMagnitudeEffect( n_particles=expInfo['particles']) elif desired_model is 'HyperbolicNonLinearUtility': model = models.HyperbolicNonLinearUtility( n_particles=expInfo['particles']) elif desired_model is 'MultiplicativeHyperbolic': model = models.MultiplicativeHyperbolic( n_particles=expInfo['particles']) elif desired_model is 'LinearInLogOdds': model = models.LinearInLogOdds(n_particles=expInfo['particles']) else: logging.error(f'Value of desired_model ({desired_model}) not recognised') raise ValueError('Filed to act on desired_model') return (design_thing, model)