示例#1
0
def get_lstm_backtest(serialized_model, dataset):
    df = pd.DataFrame.from_dict(dataset)

    ts = TimeSeries.from_dataframe(df,
                                   time_col='time_interval',
                                   value_cols=['count'])
    scaler = Scaler()
    ts = scaler.fit_transform(ts)

    model = pickle.loads(serialized_model)

    backtest = model.historical_forecasts(series=ts,
                                          start=0.8,
                                          forecast_horizon=1,
                                          stride=1,
                                          retrain=False,
                                          verbose=False)
    backtest = scaler.inverse_transform(backtest[1:])
    ts = scaler.inverse_transform(ts)
    backtest.plot(label='LSTM Model', lw=3, c='orange')
示例#2
0
def get_lstm_model(dataset=None, plot=False, verbose=False):
    if (dataset is None):
        df = pd.read_csv("jeans_day.csv")
    else:
        df = pd.DataFrame.from_dict(dataset)

    ts = TimeSeries.from_dataframe(df,
                                   time_col='time_interval',
                                   value_cols=['count'])

    train, val = ts.split_after(0.8)

    scaler = Scaler()
    train_transformed = scaler.fit_transform(train)
    val_transformed = scaler.transform(val)
    ts_transformed = scaler.transform(ts)

    params = dict()
    params['model'] = ["LSTM"]
    params['hidden_size'] = [50, 75, 100]
    params['n_rnn_layers'] = [1]
    params['input_chunk_length'] = [14]
    params['output_chunk_length'] = [1]
    params['n_epochs'] = [100]
    params['dropout'] = [0]
    params['batch_size'] = [4, 6]
    params['random_state'] = [0, 1]
    params['loss_fn'] = [MSELoss()]

    lstm = RNNModel.gridsearch(parameters=params,
                               series=train_transformed,
                               val_series=val_transformed,
                               verbose=verbose,
                               metric=mse)

    params = lstm[1]
    lstm_model = lstm[0]

    lstm_model.fit(train_transformed, verbose=True)

    if (plot):
        backtest = lstm_model.historical_forecasts(series=ts_transformed,
                                                   start=0.8,
                                                   forecast_horizon=1,
                                                   stride=1,
                                                   retrain=False,
                                                   verbose=False)
        print(val)
        print(backtest[1:])
        print("R2: {}".format(
            r2_score(scaler.inverse_transform(val_transformed),
                     scaler.inverse_transform(backtest[1:]),
                     intersect=False)))
        print("MAPE: {}".format(
            mape(scaler.inverse_transform(val_transformed),
                 scaler.inverse_transform(backtest[1:]))))
        print("MASE: {}".format(
            mase(scaler.inverse_transform(val_transformed),
                 scaler.inverse_transform(backtest[1:]), train)))
        print("MAE: {}".format(
            mae(scaler.inverse_transform(val_transformed),
                scaler.inverse_transform(backtest[1:]))))
        scaler.inverse_transform(backtest).plot(label='backtest')
        scaler.inverse_transform(ts_transformed).plot(label='actual')
        plt.title("H&M Daily, LSTM Model")
        plt.xlabel("Date")
        plt.ylabel("Count")
        plt.legend()
        plt.show()
    else:
        return [lstm_model, params]