width='650', style={'border-width': '0'}) heatmap = html.Iframe(sandbox='allow-scripts', id='heatmap_plot', height='1100', width='1000', style={'border-width': '0'}) #TAB OBJECTS AND CALLBACK #=================================== tab1_selectors = \ [dbc.Row([ dbc.Col(children = [ html.H5("Damage Type"), html.H6("Plot: Both"), dropdown_selector_tab1, html.Br() ]) ]), dbc.Row(children = [ dbc.Col(children = [ html.H5("Date Range Between 1990 - 2002"), html.H6("Plot: Bird Strike Damage Over Time"), rangeslider_selector, html.Br(), html.Br()]), dbc.Col([ html.H5("Factor"), html.H6("Plot: Effect of (factor) on Birdstrikes"),
html. Li("Qualité douteuse de certaines thématiques => 'meeting', biaise un peu nos résultats." ), ]), html.Hr() ]) data_exp = pd.read_csv("data/exp_mails.csv") data_exp = data_exp[["From", "Nombre d'emails envoyés" ]].sort_values(by=['Nombre d\'emails envoyés'], ascending=False) figExp = px.bar(data_exp, x="From", y="Nombre d'emails envoyés") count_mail_exp = html.Div(children=[ html.H5(children='Le nombre d\'emails envoyé pour chaque expéditeur'), dcc.Graph(figure=figExp) ]) data_exp_thematiques_acp = pd.read_csv("data/extracted_data.csv") tab_exp_thematiques_acp = html.Div(children=[ dt.DataTable(id='tab', columns=[{ "name": i, "id": i } for i in data_exp_thematiques_acp.iloc[:, 0:5]], data=data_exp_thematiques_acp.head().to_dict('records'), sort_action="native", style_cell={'textAlign': 'left'}, style_data={ 'whiteSpace': 'normal',
def annotation_tab(initial): try: global FILE_COUNT, LABELS_LIST_DROPDOWN_NEXT, NUMBER_OF_WAVFILES, LABELS_LIST_CHECKLIST_NEXT, LABELS_LIST_DROPDOWN_INITIAL LABELS_LIST_DROPDOWN_NEXT = [] LABELS_LIST_CHECKLIST_NEXT = [] LABELS_LIST_DROPDOWN_INITIAL = [] if initial: FILE_COUNT = 0 TOTAL_FOLDER_WAV_FILES = glob.glob(TEXT_PATH + "/*.wav") if os.path.exists(CSV_FILENAME): annotated_files = pd.read_csv(CSV_FILENAME, error_bad_lines=False) annotated_files = annotated_files['wav_file'].values.tolist() NUMBER_OF_WAVFILES = [] for i in TOTAL_FOLDER_WAV_FILES: if i.split("/")[-1] not in annotated_files: # print(i) NUMBER_OF_WAVFILES.append(i) print len(NUMBER_OF_WAVFILES) else: NUMBER_OF_WAVFILES = TOTAL_FOLDER_WAV_FILES print "total wavfiles :", len(NUMBER_OF_WAVFILES) encoded_image_to_play = base64.b64encode( open(NUMBER_OF_WAVFILES[FILE_COUNT], 'rb').read()) dataframe = pd.DataFrame() dataframe["Labels Name"] = CHECKLIST_DISPLAY return html.Div([ html.Div([ html.Br(), html.H2(NUMBER_OF_WAVFILES[FILE_COUNT].split("/")[-1], style={ "text-align": "center", "color": "green", 'text-decoration': 'underline' }), html.Audio(id='myaudio', src='data:audio/WAV;base64,{}'.format( encoded_image_to_play), controls=True, style={ "margin-top": "20px", "verticalAlign": "middle", "margin-bottom": "30px" }) ]), dash_table.DataTable(id='datatable-interactivity-' + ('inside' if initial else 'next'), columns=[{ "name": i, "id": i, "deletable": True } for i in dataframe.columns], data=dataframe.to_dict("rows"), row_selectable="multi", style_table={ "maxHeight": "300px", "maxWidth": "300px", "overflowY": "scroll" }, selected_rows=[]), dcc.Dropdown(id="dropdown_data_" + ("initial" if initial else "next"), options=[{ 'label': 'Nature ', 'value': 'Nature' }, { 'label': 'Birds Chirping ', 'value': 'Bird' }, { 'label': 'Wind Gushing', 'value': 'Wind' }, { 'label': 'Vehicle ', 'value': 'Vehicle' }, { 'label': 'Honking ', 'value': 'Honking' }, { 'label': 'Conversation ', 'value': 'Conversation' }, { 'label': 'Dog Barking ', 'value': 'Dog Barking' }, { 'label': 'Tools ', 'value': 'Tools' }, { 'label': 'Axe ', 'value': 'Axe' }], value="", placeholder="Search For Label..", style={ "fontSize": "17", "margin-top": ("20" if initial else "40") + "px", "display": "inline-block", "font": "bold", "width": "40%" }), dcc.Textarea(id="text_area_" + ("inside" if initial else "next"), placeholder='Selected Annotation', value="", style={ "width": "50%", "margin-left": "25%", "fontSize": "16", "text-align": "center" }), html.Div([ html.Button("Submit", id="submit_" + ("initial" if initial else "next"), style={ "width": "200px", "margin-top": "10px" }) ], style={"text-align": "center"}), html.Footer('\xc2\xa9' + ' Copyright WildlyTech Inc. 2019 ', style={ "position": "fixed", "left": "0", "bottom": "0", "height": "2%", "width": "100%", "background-color": "black", "color": "white", "padding": "20px", "textAlign": "center" }) ]) except ValueError: return html.Div([ html.H5("Something wrong with Audio: -" + NUMBER_OF_WAVFILES[FILE_COUNT].split("/")[-1], style={"display": "center"}) ])
}, 'backgroundColor': 'rgb(248, 248, 248)' }]) ], style={'padding-bottom': '50px'}) ], md=12), ]), #Fleet level overview: Performance when sailing dbc.Row([dbc.Col(html.H4("Performance when Sailing"))]), dbc.Row([ dbc.Col( [ html.Div([ html.H5("AE"), dcc.Graph( figure={ 'data': [ go.Bar(x=df3['Vessel Name'], y=df3['AE Consumption'], marker=dict(color='skyblue')), go.Bar(x=df3['Vessel Name'], y=df3['AE baseline'], opacity=1, marker=dict(color='rgba(0,0,0,0)', line=dict(color='black', width=2))) ], 'layout': go.Layout(barmode='overlay')
className="row", children=[ dcc.Location(id="url", refresh=False), html.Nav( id="stockargs", className="col-lg-2 bg-light sidebar", children=[ html.Div(className="card card-body bg-dark", children=[ html.H4("Stock Chart", className="mx-auto text-white") ]), html.Div( className="card card-body", children=[ html.H5(["Settings"]), html.Div( className="form-group", children=[ html.Label("Codes:", className="col-form-label"), dcc.Input(className="form-control", id="codes", type="text", value="", placeholder= "codes e.g. 1111 2222 3333") ]), html.Div( className="form-group", children=[
'overflowX': 'scroll', 'overflowY': 'scroll', 'maxHeight': '500px' }) ]) external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) app.layout = html.Div(children=[ html.Div(children=[ html.H4(children='データ概要'), generate_table(df, 5), html.H5('shape: {} raws × {} columns'.format(df.shape[0], df.shape[1])) ], style={'background': '#FFFFCC'}), html.Div(children=[ html.Div(children=[ html.H5('目的変数を選択してください'), dcc.Dropdown(id='select-target', options=[{ 'label': column, 'value': column } for column in df.columns]), html.Button(id="target-button", n_clicks=0, children="決定") ], style={'width': '40%'}), html.Div(id='target_distribution', children=html.H6('カラムが選択されていません'),
figure_duration = plot_histogram(data, 'duration', 'Duration (sec)') figure_num_words = plot_histogram(data, 'num_words', '#words') figure_num_chars = plot_histogram(data, 'num_chars', '#chars') figure_word_rate = plot_histogram(data, 'word_rate', '#words/sec') figure_char_rate = plot_histogram(data, 'char_rate', '#chars/sec') if metrics_available: figure_wer = plot_histogram(data, 'WER', 'WER, %') figure_cer = plot_histogram(data, 'CER', 'CER, %') figure_wmr = plot_histogram(data, 'WMR', 'WMR, %') figure_word_acc = plot_word_accuracy(vocabulary) stats_layout = [ dbc.Row(dbc.Col(html.H5(children='Global Statistics'), className='text-secondary'), className='mt-3'), dbc.Row( [ dbc.Col(html.Div('Number of hours', className='text-secondary'), width=3, className='border-right'), dbc.Col(html.Div('Number of utterances', className='text-secondary'), width=3, className='border-right'), dbc.Col(html.Div('Vocabulary size', className='text-secondary'), width=3, className='border-right'), dbc.Col(html.Div('Alphabet size', className='text-secondary'), width=3), ], className='bg-light mt-2 rounded-top border-top border-left border-right', ), dbc.Row( [ dbc.Col( html.H5( '{:.2f} hours'.format(num_hours), className='text-center p-1',
html.Div([ html.Div(dcc.Markdown( children= """**Fig. 1** relative distances among accessions given cluster profiles selected and analysed. In fact, loadings plot\n of PCA run on the former."""), className='six columns'), html.Div(dcc.Markdown( children= """**Table 1** Passport information on accessions shown in Fig. 1. If cluster cloud is selected below, then only accessions in red (updated plot) are shown."""), className='six columns') ], className="row"), html.Hr(), html.Div([ html.H5(id="header1", className="six columns", children="opacity"), html.H5(id="header2", className="six columns", children="Likelihood threshold") ], className="row"), html.Div([ dcc.Slider(updatemode="drag", className='six columns', id='opacity', min=.1, max=1, value=.8, step=.1, marks={.1 * x: str(round(.1 * x, 1)) for x in range(3, 9)}),
dropdown_style = { 'width': '50%', 'display': 'inline-block', 'vertical-align': 'middle', 'padding': '5px' } client = bigquery.Client() click_count = 0 app = dash.Dash(__name__, external_stylesheets=external_stylesheets) app.title = "LandingSpot" app.layout = html.Div([ html.H1("LandingSpot", style={'text-align': 'center'}), html.H5("Where will you land?", style={'text-align': 'center'}), html.Br(), # Preferences html.Div( [ html.H6("Tell me what you need...", style={ 'text-align': 'left', 'padding': '5px' }), # Bedrooms Button html.Div([ html.Label([ "Bedrooms:",
"display": "flex", "justify-content": "center" }), ) ], style={"margin-left": "15rem"}) # ----------------------------------------------------------------------- Content 2 content2 = html.Div([ html.H1(["Segmentación"], style=CONTENT_STYLE), html. P("Aca se muestra una clasificación para 25 mil clientes por restricciones de velocidad,\ la base completa se uso para la hoja 'recomendaciones'."), html.Div([ dbc.Row( dbc.Col( html.H5("Seleccione un clúster para ver sus estadísticas:"))), perfilamiento_header, html.Div(id="tabla_resumen_clu") ], style={}), graphs2 ], style={"margin-left": "10rem"}) def content_us(app, visible): return html.Div( [ dbc.Row( dbc.Col( dbc.Button("< Back", color="primary",
html.A(['Print PDF'], className="button no-print", style={'position': "absolute", 'top': '-40', 'right': '0'}), html.Div([ # subpage 1 # Row 1 (Header) html.Div([ html.Div([ #html.H5( ## # dict["title"] + " 4-D Report lo"), html.H5(first_dict["title_output"], id='title'), html.H6(first_dict["location_output"], id='location', style={'color': '#7F90AC'}), html.Div([ html.Div([ dcc.Dropdown( id='locas', options=first_dict["locas_output"], value="All", clearable=False, className="dropper", placeholder="Type Location",
html.H2('Appendix - Common HTML Components'), html.Hr(), reusable_components.Markdown('html.H1("H1 Element")', style={'borderLeft': 'thin solid lightgrey'}), html.H1('H1 Element'), html.Hr(), reusable_components.Markdown('html.H2("H2 Element")', style={'borderLeft': 'thin solid lightgrey'}), html.H2('H2 Element'), html.Hr(), reusable_components.Markdown('html.H3("H3 Element")', style={'borderLeft': 'thin solid lightgrey'}), html.H3('H3 Element'), html.Hr(), reusable_components.Markdown('html.H4("H4 Element")', style={'borderLeft': 'thin solid lightgrey'}), html.H4('H4 Element'), html.Hr(), reusable_components.Markdown('html.H5("H5 Element")', style={'borderLeft': 'thin solid lightgrey'}), html.H5('H5 Element'), html.Hr(), reusable_components.Markdown('html.H6("H6 Element")', style={'borderLeft': 'thin solid lightgrey'}), html.H6('H6 Element'), html.Hr(), reusable_components.Markdown('html.Div("Generic Div Element")', style={'borderLeft': 'thin solid lightgrey'}), html.Div('Generic Div Element') ])
def choose_assist_line(episode, network_graph): return html.Div(id="choose_assist_line", className="lineBlock card", children=[ html.H4("Choose or Assist"), html.Div(className="card-body row", children=[ html.Div(className="col-7", children=[ html.H5("Network at time step t"), dcc.Graph(id="network_graph_choose", figure=network_graph,), ]), html.Div(className="col-5", children=[ dbc.Tabs(children=[ dbc.Tab(label='Choose', labelClassName="fas fa-user", children=[ dbc.Tabs(children=[ dbc.Tab(label="Dropdowns", children=[ dbc.Tabs(children=[ dbc.Tab(label='Lines', children=[ html.P("Choose a line to act on:", className="mt-1"), dac.Select( id='select_lines_simulation', options=[{'label': line_name, 'value': line_name} for line_name in episode.line_names], mode='default', value=episode.line_names[0] ), html.P("Choose an action:", className="mt-1"), dac.Radio(options=[ {"label": "Set", "value": "Set"}, {"label": "Change", "value": "Change"}, ], value="Set", id="select_action_lines", buttonStyle="solid"), ]), dbc.Tab(label='Subs', children=[ html.P("Choose a substation to act on:"), dac.Select( id='select_subs_simulation', options=[{'label': name, 'value': name} for name in episode.name_sub], mode='default', value=episode.name_sub[0] ), html.P("Choose an action:"), dac.Radio(options=[ {"label": "Set", "value": "Set"}, {"label": "Change", "value": "Change"}, ], value="Set", id="select_action_subs", buttonStyle="solid"), ]), dbc.Tab(label='Gens', children=[ html.P("Choose a generator to act on:"), dac.Select( id='select_gens_simulation', options=[{'label': prod_name, 'value': prod_name} for prod_name in episode.prod_names], mode='default', value=episode.prod_names[0] ), html.P("Choose an action:"), dac.Radio(options=[ {"label": "Redispatch", "value": "Redispatch"}, ], value="Redispatch", id="select_action_gens", buttonStyle="solid"), ]) ]) ]), dbc.Tab(label="Dict", children=[ html.P("Enter the action dictionary:"), dbc.Textarea(className="mb-3", placeholder="{set_line_status: []}"), ]) ]), ]), dbc.Tab(label='Assist', labelClassName="fas fa-robot", children=[ "content" ]), ]), dbc.Button("Simulate", id="simulate_action", color="danger", className="mt-3 mb-3"), html.P("Action dictionary:"), html.Div(id="action_dictionary") ]), ]), ])
def server_layout(mode=None): #return the layout of the GUI session_id = str(uuid.uuid4()) #variable, distribution selection panel selection_panel = html.Div(id='selection-panel',children=[ html.Div(id='selected-column-panel',children=[ html.Div(id='selected-column-sec1-panel',children=[ drc.NamedDropdown( name='Select series', id='selected-series', searchable=False, clearable=False ), dcc.Checklist( id='apply-log-transform', options=[{'label':' Apply log transform','value':'logtransform'} ]), ]), drc.NamedTextarea( id='series-characteristics', name='Series characteristics', cols='50', rows='2', readOnly='readOnly' ), ]), html.Div(id='apply-panel',children=[ html.Div(id='apply-sec1-panel',children=[ drc.NamedDropdown( id='fitted-distributions', name='Fitted distribution', options=[ {'label': ' '+ v[0], 'value': k} for k,v in dist_par_template.items() if k != 'native' and v[2] ], value='normal', searchable=False, clearable=False ), ]), # html.Div(id='apply-sec1b-panel',children=[ # drc.NamedDropdown( # id='plotting-distributions', # name='Probability scale', # options=[ # {'label': ' '+ v[0], 'value': k} # for k,v in dist_par_template.items() if v[2] # ], # value='native', # searchable=False, # clearable=False # ), # ]), html.Div(id='apply-sec2a-panel',children=[ html.Button('Fit',id='fit-button',n_clicks=0), ]), #dcc.Checklist( # id='show-y-log', # options=[{'label':' Show y-axis in log scale','value':'true'} #]), ]), html.Label(id='graph-refresh'), dcc.Store( id='graph-refresh-hidden', data=0 ), html.Div(id='message-panel',children=[""]), ]) #variable, distribution selection panel par_panel = html.Div(id='fitted-panel',children=[ html.Div(id='fitted-sec1-panel',children=[ drc.NamedTextarea( id='fitted-par', name='Estimated distribution parameters', readOnly='readOnly', cols= 40, rows= 3 ), drc.NamedTextarea( id='estimated-quantiles', name='Estimated quantiles', readOnly='readOnly', cols= 40, rows= 3 ), ]) ]) upload_panel = html.Div(id='last-card',children=[ dcc.Upload( id='upload-data', children=html.Div([ 'Drag and Drop or ', html.A('Select File') ]), style={ 'lineHeight': '60px', 'borderWidth': '1px', 'borderStyle': 'dashed', 'borderRadius': '5px', 'textAlign': 'center', } ), html.Label('''File upload limited to < %0.0f Kb, containing no more than %d rows and %d columns'''%(configs['max_file_size']/1024,configs['max_file_rows'],configs['max_file_cols'])), html.Label('',id='data-filename'), html.Label('',id='data-description'), html.Div(id='table-panel',children=[ dash_table.DataTable( id='attribute-table', columns=[], row_selectable='multi', editable=False, style_header={ 'textAlign': 'center', 'fontWeight': 'bold', 'color': 'black', }, style_cell={ 'padding': '2px', '--selected-background': 'grey', 'color': 'black', }, style_data_conditional=[ { 'if': {'row_index': 'odd'}, 'backgroundColor': 'rgb(248, 248, 248)' } ], #locale_format= '0.3', ) ],style={'visibility':'none','display':'none'}), ]) chart_panel = html.Div(id='chart-panel',children=[ dcc.Loading(id = "loading-icon", children=[ dcc.Graph( id='graph', figure={ }, responsive=True, config=graph_config, style={'display':'none'} ) ]), ], style={'visibility':'none'}) layout = html.Div( id="body", className="container scalable", children=[ visdcc.Run_js(id = 'chart-updated-js'), visdcc.Run_js(id = 'chart-unupdated-js'), visdcc.Run_js(id = 'error-display-js'), dcc.Store(id='error-display',data=''), html.Title(title=configs['title']), #hidden session id #row 1 for title html.Div(id='top-panel',children=[ html.H5(id='app-title',children= '''Distribution Fitting and Analysis Tool. This tool is only for demostration porpuses''', style={"margin-bottom": "0px"}, ), ],className="row flex-display"), #second row layout html.Div(id='main-panel',children=[ html.Div(id='left-panel',children=[ upload_panel ]), html.Div(id='output-panel',children=[ selection_panel, par_panel, chart_panel ],style={'visibility':'none','display':'none'}), ]), #row 4 is the footer html.Div(id='footer-panel',children=[ ''' A web application built on top of Dash (v%s) (framework for Python) by Exequiel Sepúlveda and Dmitri Kavetski.'''%(dash.__version__) ]), ], ) return layout
y=df_init[selected_col], name=selected_col, line=dict(width=2, color='rgb(229, 151, 50)'), mode='markers') layout = go.Layout(title='Profit & Loss Plot', hovermode='closest') fig = go.Figure(data=[trace_1], layout=layout) fig.update_xaxes(title_text='Year') fig.update_yaxes(title_text='Profit&Loss ($)') # Create a Dash layout app.layout = html.Div([ # Header html.Div( [ html.H1("Trading Strategy Back Testing Dashboard"), html.H5("Final testing version 1.0"), ], style={ 'paddingLeft': '10%', 'paddingBottom': '2.5%', 'paddingTop': '3%', 'backgroundColor': '#74F3FF' }), # Dropdowns html.Div( [ # Sector html.Div( [ html.H5('Select sectors'),
students_hybrid_chart = dcc.Graph(id='students-hybrid-chart', figure=go.Figure(), config=modebar_config) students_sps_chart = dcc.Graph(id='students-sps-chart', figure=go.Figure(), config=modebar_config) students_phd_chart = dcc.Graph(id='students-phd-chart', figure=go.Figure(), config=modebar_config) """ Main students tab skeleton """ students_tab = html.Div([ html.H5('Undergraduate', id='students-ug-header', className='text-info'), students_ug_chart, html.Div([ html.H5('Masters', id='students-masters-header', className='text-info'), students_masters_chart, ], id='students-masters-container'), html.Div([ html.H5('Interdepartmental Masters', id='students-interdept-header', className='text-info'), students_interdept_chart, ], id='students-interdept-container'), html.Div([
) # make a button to run the simulator run_btn = dbc.Button(children = "Run Simulation", outline=True, size = "lg", color="primary", className="mb-3", id="btn_run", n_clicks = 0) # make a button for plots plot_btn = dbc.Button(children = "Add Chart", outline=True, size = "lg", color="primary", className="mb-3", id="btn_plot", n_clicks = 0) # layout all the components to be displayed content = html.Div( [ dbc.Row([ dbc.Col(html.H1(children='Reactor Modeling Sandbox'), width = 9), ]), dbc.Row([ dbc.Col(html.H5(children='Beep bop'), width = 9), dbc.Col( dbc.DropdownMenu( label = "Select a model", children = dropdown_models(0), right=False, id = 'dd_models' ), ) ]), dbc.Row([ dbc.Col(html.H1(children=''), width = 12), ]), dbc.Row([ dbc.Col(dbc.Col([ dbc.Row(dsc.collapse([], 'Manipulated Variables', 'mvars-collapse')),
def init_attacker(server): app = dash.Dash( server=server, url_base_pathname=URL_BASE, suppress_callback_exceptions=True, ) app.layout = html.Div(children=[ html.H1(children='Fantasy Premier League Attack/Midfield Dashboard', style={ 'textAlign': 'center', 'color': '#28D0B4', }), html.Div( children= 'This interactive web app can be a toolkit for you to select and optimise your player selection based on their previous year\'s performances', style={ 'color': '#28D0B4', }), html.Div( id='stats-menu', className='dropdowns', children=[ dcc.Dropdown(id='yaxis', className='ydropdown', options=[{ 'label': 'Players', 'value': 'player' }, { 'label': 'Games', 'value': 'games' }, { 'label': 'Minutes', 'value': 'minutes' }, { 'label': 'Total 90s', 'value': 'minutes_90s' }, { 'label': 'Goals per90', 'value': 'goals_per90' }, { 'label': 'Assists per90', 'value': 'assists_per90' }, { 'label': 'Penalties Attempted', 'value': 'pens_att' }, { 'label': 'Penalty Conversion %', 'value': 'pens_conv' }, { 'label': 'Yellow Cards', 'value': 'cards_yellow' }, { 'label': 'Red Cards', 'value': 'cards_red' }, { 'label': 'Goals & Assists per90', 'value': 'goals_assists_per90' }, { 'label': 'Goals + Assists - Penalties per90', 'value': 'goals_assists_pen_per90' }, { 'label': 'Expected Goals per90', 'value': 'xg_per90' }, { 'label': 'Expected Assists per90', 'value': 'xa_per90' }, { 'label': 'xG & xA per90', 'value': 'xg_xa_per90' }, { 'label': 'Non-Penalty Expected goals per90', 'value': 'npxg_per90' }, { 'label': 'npxG + xA per90', 'value': 'npxg_xa_per90' }, { 'label': 'xG_net', 'value': 'xg_net' }, { 'label': 'Cost', 'value': 'cost' }, { 'label': 'Points earned', 'value': 'points' }, { 'label': 'Points per game', 'value': 'ppg' }, { 'label': 'Points per cost', 'value': 'ppc' }], placeholder='Choose statistics for Y axis', searchable=True, value='points'), dcc.Dropdown(id='xaxis', className='xdropdown', options=[{ 'label': 'Players', 'value': 'player' }, { 'label': 'Games', 'value': 'games' }, { 'label': 'Minutes', 'value': 'minutes' }, { 'label': 'Total 90s', 'value': 'minutes_90s' }, { 'label': 'Goals per90', 'value': 'goals_per90' }, { 'label': 'Assists per90', 'value': 'assists_per90' }, { 'label': 'Penalties Attempted', 'value': 'pens_att' }, { 'label': 'Penalty Conversion %', 'value': 'pens_conv' }, { 'label': 'Yellow Cards', 'value': 'cards_yellow' }, { 'label': 'Red Cards', 'value': 'cards_red' }, { 'label': 'Goals & Assists per90', 'value': 'goals_assists_per90' }, { 'label': 'Goals + Assists - Penalties per90', 'value': 'goals_assists_pen_per90' }, { 'label': 'Expected Goals per90', 'value': 'xg_per90' }, { 'label': 'Expected Assists per90', 'value': 'xa_per90' }, { 'label': 'xG & xA per90', 'value': 'xg_xa_per90' }, { 'label': 'Non-Penalty Expected goals per90', 'value': 'npxg_per90' }, { 'label': 'npxG + xA per90', 'value': 'npxg_xa_per90' }, { 'label': 'xG_net', 'value': 'xg_net' }, { 'label': 'Cost', 'value': 'cost' }, { 'label': 'Points earned', 'value': 'points' }, { 'label': 'Points per game', 'value': 'ppg' }, { 'label': 'Points per cost', 'value': 'ppc' }], placeholder='Choose statistics for X axis', searchable=True, value='player'), dcc.RadioItems(id='plot', className='plot-select', options=[ { 'label': 'Bar Plot', 'value': 'bar' }, { 'label': 'Scatter Plot', 'value': 'scatter' }, ], value='scatter'), ]), dcc.Graph( id='stats-graph', className='graph', style={ 'marginTop': 40, }), html.Div(className='info-panel', children=[ html.H5(children='Some of the stats used', style={'marginBottom': -2}), dcc.Markdown(''' '''), html. A(' - Statisfy - A collections of Basic Football Analytics', href='https://github.com/sidthakur08/statisfy'), html.Br(), html.A(' - Contact me on Twitter :)', href='https://twitter.com/sidtweetsnow', target='_blank'), html.Br(), ]), html.Div(className='link-name', children=[ html.A('Link to the github repository', href="https://github.com/sidthakur08/fpl_explore", target='_blank') ]), html.Br(), html.Br(), html.Br(), ]) init_attacker_callbacks(app) return app.server
children=[ html.H4('''Sales remuneration by units : '''), generate_table( comparaison[['marketplace', 'sales/units']]), ]), html.Div(className="dataframe1", children=[ html.H4('''Shipment price by units : '''), generate_table(comparaison[[ 'marketplace', 'shipping/units' ]]), ]), html.Div(className="dataframe1", children=[ html.H4('''FBA shipping cost per order : '''), html.H5(fba), html.H4('''MFN shipping cost per order : '''), html.H5(mfn), ]), html.Div(children=[ dcc.Graph(figure=word_count), dcc.Graph(figure=shipment), dcc.Graph(figure=sunburst), dcc.Graph(figure=commands), dcc.Graph(figure=sell), ]), ]) ]) if __name__ == '__main__': app.run_server(port=8050, host='0.0.0.0', debug=True)
app.layout = html.Div([ Row([ Col([html.H1('Histogram Comparison for bme data', style = {'margin-bottom':50, 'margin-top':20})], width={"size": 12, "offset": 1}) ]), Row([ Col([ dcc.Graph(id='hist_1', style={'width':'95%','box-shadow':'2px 2px 2px grey'}) ], width={"size": 4, "offset": 1}), Col([ html.Div([ html.Div([ html.H3('Hist 1'), dropdown('var_1', var), Row([Col(html.H5('Q0: '), sm=1), Col(checklist('multi_Q0_1',dropdown_options.Q0))]), Row([Col(html.H5('Q1: '), sm=1), Col(checklist('multi_Q1_1',dropdown_options.Q1))]), Row([Col(html.H5('Q2: '), sm=1), Col(checklist('multi_Q2_1',dropdown_options.Q2))]), Row([Col(html.H5('Q3: '), sm=1), Col(checklist('multi_Q3_1',dropdown_options.Q3))]), Row([Col(html.H5('Q4: '), sm=1), Col(rgslider('rgslider_Q4_1',df.Q4, 8))]), Row([Col(html.H5('Q5: '), sm=1), Col(rgslider('rgslider_Q5_1',df.Q5, 5))]), Row([Col(html.H5('Q6: '), sm=1), Col(rgslider('rgslider_Q6_1',df.Q6, 5))]), Row([Col(html.H5('Q7: '), sm=1), Col(checklist('multi_Q7_1',dropdown_options.Q7))]), Row([Col(html.H5('Q8: '), sm=1), Col(rgslider('rgslider_Q8_1',df.Q8, 5))]), Row([Col(html.H5('Q9: '), sm=1), Col(checklist('multi_Q9_1',dropdown_options.Q9))]), Row([Col(html.H5('Q10: '), sm=1), Col(rgslider('rgslider_Q10_1',df.Q10, 5))]) ], style={'width':'95%'}) ], style={'width':'95%', 'box-shadow':'2px 2px 2px grey'}) ]) ]),
import datetime import operator import os import base64 import io #app = dash.Dash() app = dash.Dash(__name__) server = app.server app.scripts.config.serve_locally = True app.config['suppress_callback_exceptions'] = True app.layout = html.Div([ html.H5("Upload Files"), dcc.Upload(id='upload-data', children=html.Div(['Drag and Drop or ', html.A('Select Files')]), style={ 'width': '100%', 'height': '60px', 'lineHeight': '60px', 'borderWidth': '1px', 'borderStyle': 'dashed', 'borderRadius': '5px', 'textAlign': 'center', 'margin': '10px' }, multiple=False), html.Br(),
MAX_RECENT_POSTS = 10 app_colors = { "text": "#0C0F0A", "background": "#ffffff" } app = dash.Dash(__name__) app.layout = html.Div([ html.Div( className="container-fluid", children=[ html.H1("Live reddit sentiment"), html.H5("Search:"), dcc.Input(id="keyword", type="text", value="") ], style={'width':'50%','margin-left':10,'margin-right':60,'max-width':50000} ), html.Div(className="row", children=[ html.Div(id="") ]), html.Div(className="row", children=[ html.Div(id="recent-reddit-table", className="col s12 m6 l6"), html.Div(dcc.Graph(id="sentiment-pie", animate=False), className="col s12 m6 l6") ]), dcc.Interval( id="recent-reddit-table-update",
colors = { 'background': '#111111', 'text': '#009a00' } app.layout = html.Div([ html.Div( className="banner", children = [html.H2("WorkspaceC.alpha 0.1", style={ 'color': colors['text'], }), html.Img(src='/assets/stock_icon.png')]), html.Div( children=html.Div([ html.H5('Log in'), ])), html.Div(["Input: ", dcc.Input(id='my-input', value='initial value', type='text')]), html.Div(["Write: ", html.Button(id='time-button', children='Gettime')]), html.Br(), html.Div(id='my-output'), ]) @app.callback( Output(component_id='my-output', component_property='children'), [Input(component_id='time-button', component_property='n_clicks')] )
style={ 'height': '60px', 'width': 'auto', 'margin-bottom': '25px', }, ) ], className='one-third column'), html.Div( [ html.Div([ html.H3( 'The Best Movie Site Ever', style={'margin-bottom': '0px'}, ), html.H5('Find the right movie for you', style={'margin-top': '0px'}), ]) ], className='one-half column', id='title', ), html.Div( [ html.A( html.Button("Like it", id="like-it-button"), href="https://plot.ly/dash/pricing/", ) ], className="one-third column", id="button", ),
[ dbc.NavItem(dbc.NavLink("NP Classifier", href="#")), dbc.NavItem(dbc.NavLink("Report Feedback", href="https://docs.google.com/forms/d/e/1FAIpQLSf1-sw-P0SQGokyeaOpEmLda0UPJW93qkrI8rfp7D46fHVi6g/viewform?usp=sf_link")), dbc.NavItem(dbc.NavLink("Preprint Publication", href="https://chemrxiv.org/articles/preprint/NPClassifier_A_Deep_Neural_Network-Based_Structural_Classification_Tool_for_Natural_Products/12885494/1")), dbc.NavItem(dbc.NavLink("API", href="https://ccms-ucsd.github.io/GNPSDocumentation/api/#structure-np-classifier")), ], navbar=True) ], color="light", dark=False, sticky="top", ) DASHBOARD = [ dcc.Location(id='url', refresh=False), dbc.CardHeader(html.H5("NP Classifier")), dbc.CardBody( [ html.Div(id='version', children="Version - 1.5"), html.Br(), dbc.Textarea(className="mb-3", id='smiles_string', placeholder="Smiles Structure"), dcc.Loading( id="structure", children=[html.Div([html.Div(id="loading-output-5")])], type="default", ), dcc.Loading( id="classification_table", children=[html.Div([html.Div(id="loading-output-3")])], type="default", ),
'videoCount': 'Video', 'voiceParticipantCount': 'Sprecher'} colors = { 'bg_black': '#818181', 'text_green': '#1dcf9d', 'bg_blue': '#365b6b', 'bg_blue_graph': '#334f65' } ######### ### DBC Card ### Sum of meeting, listener, participant, and video card_content_1 = [ dbc.CardBody( [ html.H5("Meeting", className="card-title"), html.P("", className="card-text", ), df.shape[0] #dfLog['createTime'].nunique(), ] ), ] card_content_2 = [ dbc.CardBody( [ html.H5("Zuhörer", className="card-title"), html.P("", className="card-text", ), groupListenerCount['listenerCount'].sum(), ] ),
figure={ 'data': [ go.Bar(x=cov_data['Country_Region'], y=cov_data['Recovered'], marker={'color': 'rgb(51,204,153)'}) ], 'layout': { 'title': 'Recovery by contry', } }, ), dcc.Graph( id='example-graph2', figure={ 'data': [ go.Bar(x=cov_data['Country_Region'], y=cov_data['Deaths'], marker={'color': 'rgb(200,204,53)'}) ], 'layout': { 'title': 'Fatalities by country' } }, ), html.H5("Developed by Natalie Andrade", style={'font-family': "Open Sans" }), ]) if __name__ == '__main__': app.run_server(debug=True)
def get_evaluation_dash_app(self, dash_=None): """ Evaluation dass app. :return: """ external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] if dash_ is None: app = dash.Dash(__name__, external_stylesheets=external_stylesheets, suppress_callback_exceptions=True) else: app = dash_ # forward_returns_period = [1, 2, 5, 10] # period list # forward_str = str(forward_returns_period).replace('[', '').replace(']', '') para_dcc_list = [] for k, v in self.alpha_func_paras.items(): para_dcc_list.append(html.Div(children=k)) para_dcc_list.append( dcc.Input(id="input_{}".format(k), placeholder=str(k), type='number', value=str(v), debounce=True)) app.layout = html.Div( children=[ html.H1(children=self.factor_name + ' evaluation', style={ 'font-weight': 'normal', 'text-align': 'center', 'display': 'block', 'fontFamily': 'helvetica neue', 'margin': '100px auto' }), html.Div([ # change forward returns html.Div( [ html.Div(id='forward-returns-period'), # add forward returns html.Div( children= 'Enter a value to add or remove forward return value' ), dcc.Input(id='forwards-periods-input', type='text', value='1, 2, 5, 10'), html.Button('Update', id='UpdateButton'), ], style={ 'margin-left': '6.25em', 'width:': '25em', 'float': 'left' }), # change parameter html.Div([ html.Div(children='Factor Parameter'), html.Div(para_dcc_list, id='alpha_paras'), html.Button('Submit', id='AlphaButton'), html.Div(id="current-parameter"), ], style={ 'margin-left': '20em', 'display': 'inline-block' }), ]), html.Div([ dcc.RadioItems( id='in-out-sample', options=[{ 'label': i, 'value': i } for i in ['In sample', 'Out ot the sample']], value='In sample', labelStyle={'display': 'inline-block'}) ], style={ 'display': 'block', 'margin': '0px 100px 50px 100px' }), # summary table html.Div([ html.H5(children='Factor Summary Table', style={ 'text-align': 'center', 'margin-bottom': '20px' }), html.Table(id='summary-table', style={ 'width:': '40%', 'float': 'left', 'font-size': '1.25em' }) ], style={ 'margin-left': '6.25rem', 'display': 'inline-block' }), # ic_table html.Div([ html.H5(children='Factor IC Table', style={ 'display': 'block', 'text-align': 'center', 'margin-bottom': '20px' }), html.Table(id='ic-table', style={ 'width:': '40%', 'font-size': '1.25em' }), ], style={ 'margin-left': '18.75em', 'display': 'inline-block' }), # beta table html.Div([ html.H5(children='Factor Beta', style={ 'text-align': 'center', 'margin-bottom': '20px' }), html.Table(id='beta-table', style={ 'width': '100%', 'font-size': '1.25em' }) ], style={ 'display': 'block', 'margin': '20px auto 60px' }), html.Div( [ html.H5(children='Factor Distribution', style={ 'text-align': 'center', 'margin': 'auto' }), dcc.Graph(id='distribution') ], style={ 'width': '49%', 'display': 'inline-block', 'margin-bottom': '50px' }), html.Div( [ html.H5(children='Q-Q plot ', style={ 'text-align': 'center', 'margin': 'auto' }), dcc.Graph(id='qqplot') ], style={ 'width': '49%', 'display': 'inline-block', 'margin-bottom': '50px' }), html.Div( [ html.H5(children='Factor IC', style={ 'text-align': 'center', 'margin': 'auto' }), dcc.Graph(id='ic_heatmap') ], style={ 'width': '100%', 'display': 'inline-block', 'margin-bottom': '50px' }), html.Div( [ html.H5(children='Price Factor', style={ 'text-align': 'center', 'margin': 'auto' }), dcc.Graph(id='price_factor') ], style={ 'width': '100%', 'display': 'inline-block', 'margin-bottom': '50px' }), html.Div( [ html.H5(children='Factor Return', style={ 'text-align': 'center', 'margin': 'auto' }), dcc.Graph(id='factor-returns') ], style={ 'width': '100%', 'display': 'inline-block', 'margin-bottom': '50px' }), html.Div( [ html.H5(children='Factor Backtesting', style={ 'text-align': 'center', 'margin': 'auto' }), dcc.Graph(id='factor-backtest') ], style={ 'width': '100%', 'display': 'inline-block', 'margin-bottom': '50px' }), html.Div(children=self.factor.to_json(orient='split'), id='in_sample_factor', style={'display': 'none'}), html.Div(id='out_sample_factor', style={'display': 'none'}), html.Div(children=json.dumps([1, 2, 5, 10]), id='forward_returns_period_saved', style={'display': 'none'}), html.Div(id='forward_str', style={'display': 'none'}), ], style={'margin': '20px'}) # make input parameter into dict def _get_alpha_parameter_from_div(alpha_paras): paras = {} for child in alpha_paras: if child['type'] == 'Input': props = child['props'] k = props['id'].replace('input_', '') v = props['value'] try: v = int(v) except: v = float(v) paras[k] = v return paras @app.callback(Output('in_sample_factor', 'children'), [ Input('AlphaButton', 'n_clicks'), Input('alpha_paras', 'children') ]) def update_alpha_insample(n_clicks, alpha_paras): # some expensive clean data step # print(alpha_paras) paras = _get_alpha_parameter_from_div(alpha_paras) self.calculate_factor(self.alpha_func, **paras) in_sample_factor = self.factor # type: pd.Series # more generally, this line would be # json.dumps(cleaned_df) return in_sample_factor.to_json(orient='split') @app.callback(Output('out_sample_factor', 'children'), [ Input('AlphaButton', 'n_clicks'), Input('alpha_paras', 'children') ]) def update_alpha_out_of_sample(n_clicks, alpha_paras): paras = _get_alpha_parameter_from_div(alpha_paras) self.calculate_factor(self.alpha_func, **paras) out_of_sample_factor = self.alpha_func(self.out_of_sample, **paras) # type: pd.Series # more generally, this line would be # json.dumps(cleaned_df) return out_of_sample_factor.to_json(orient='split') @app.callback([ Output('forward_returns_period_saved', 'children'), Output("forward-returns-period", "children") ], [Input("UpdateButton", "n_clicks")], [State("forwards-periods-input", "value")]) def update_forward_return(n_clicks, value): fr = list(set([int(p) for p in value.split(',')])) fr.sort() forward_str = str(fr).replace('[', '').replace(']', '') return json.dumps(fr), 'Forward return list: ' + forward_str @app.callback([ Output('distribution', 'figure'), Output('ic_heatmap', 'figure'), Output('qqplot', 'figure'), Output('price_factor', 'figure'), Output('factor-returns', 'figure'), Output('factor-backtest', 'figure'), Output('summary-table', 'children'), Output('ic-table', 'children'), Output('beta-table', 'children'), ], [ Input("UpdateButton", "n_clicks"), Input('in-out-sample', 'value'), Input('forward_returns_period_saved', 'children'), Input('in_sample_factor', 'children'), Input('out_sample_factor', 'children'), ]) def update_forward_returns(n_clicks, value, forward_period, alpha_json, out_alpha_json): forward_returns_period = json.loads(forward_period) factor = pd.read_json(alpha_json, orient='split', typ='series') if value == 'In sample': update_distribution_figure = factor_distribution_plot(factor) returns = calculate_forward_returns(self.in_sample, forward_returns_period) ic_heatmap = get_monthly_ic(returns, factor, forward_returns_period) update_heatmap_figure = monthly_ic_heatmap_plot(ic_heatmap) update_qqplot_figure = qq_plot(factor) update_factor_plot_figure = price_factor_plot( self.in_sample, factor) factor_returns = calculate_ts_factor_returns( self.in_sample, factor, forward_returns_period) update_factor_plot_figure1 = returns_plot( factor_returns, self.factor_name) factor_returns = calculate_ts_factor_returns( self.in_sample, factor, forward_returns_period) cumulative_returns = calculate_cumulative_returns( factor_returns, 1) benchmark = self.in_sample['close'] / self.in_sample['close'][0] update_factor_plot_figure2 = cumulative_return_plot( cumulative_returns, benchmark=benchmark, factor_name=self.factor_name) # tables factor_table = pd_to_dash_table(factor_summary(factor), 'summary') ic_table = pd_to_dash_table( pd.DataFrame(calculate_ts_information_coefficient( factor, returns), columns=[self.factor_name]), 'ic') ols_table = pd_to_dash_table( factor_ols_regression(factor, returns), 'ols') return update_distribution_figure, update_heatmap_figure, \ update_qqplot_figure, update_factor_plot_figure, \ update_factor_plot_figure1, update_factor_plot_figure2, \ factor_table, ic_table, ols_table else: # out of sample的情况还没搞好 out_factor = pd.read_json(out_alpha_json, orient='split', typ='series') # update_distribution_figure = factor_distribution_plot(out_factor) returns = calculate_forward_returns(self.out_of_sample, forward_returns_period) ic_heatmap = get_monthly_ic(returns, out_factor, forward_returns_period) update_heatmap_figure = monthly_ic_heatmap_plot(ic_heatmap) # update_qqplot_figure = qq_plot(out_factor) update_factor_plot_figure = price_factor_plot( self.out_of_sample, out_factor) factor_returns = calculate_ts_factor_returns( self.out_of_sample, out_factor, forward_returns_period) update_factor_plot_figure1 = returns_plot( factor_returns, self.factor_name) factor_returns = calculate_ts_factor_returns( self.out_of_sample, out_factor, forward_returns_period) cumulative_returns = calculate_cumulative_returns( factor_returns, 1) benchmark = self.out_of_sample['close'] / self.out_of_sample[ 'close'][0] update_factor_plot_figure2 = cumulative_return_plot( cumulative_returns, benchmark=benchmark, factor_name=self.factor_name) # for out of sample data onlye in_out_distplot = overlaid_factor_distribution_plot( factor, out_factor) inout_qqplot = observed_qq_plot(factor, out_factor) # inout_qqplot.show() factor_table = pd_to_dash_table(factor_summary(out_factor), 'summary') ic_table = pd_to_dash_table( pd.DataFrame(calculate_ts_information_coefficient( out_factor, returns), columns=[self.factor_name]), 'ic') ols_table = pd_to_dash_table( factor_ols_regression(out_factor, returns), 'ols') return in_out_distplot, update_heatmap_figure, \ inout_qqplot, update_factor_plot_figure, \ update_factor_plot_figure1, update_factor_plot_figure2, \ factor_table, ic_table, ols_table return app
def tri_community(): return html.Div( id='tri_community', style={ 'position': 'relative', 'float': 'center', 'border': '3px solid #319997', 'border-radius': '6px', 'margin': '0.25%', 'padding': '1%', 'width': '100%', 'margin-bottom': '2vH' }, children=[ html.Div(id='comm_filled', style={'display': 'none'}), html.Div( children=[dbc.Input(id='data_com', type='text', value='')], style={'display': 'none'}), html.Div([ html.H6('COVID Triage - Community', style={'font-weight': '600'}), ]), html.Br(), html.Div( style={}, children=[ html.Div( [ html.H5('Pregnancy - Demographics', style={'font-weight': 'bold'}), html.Br(), html.Br(), html.Br(), dbc.Row([ # Q1 dbc.Col(surname_qc, width=1), dbc.Col(surname_rc, width=1), dbc.Col(html.P(), width=1), # Q2 dbc.Col(nhs_qc, width=1), dbc.Col(nhs_rc, width=1), dbc.Col(html.P(), width=1), # Q3 dbc.Col(doby_qc, width=1), dbc.Col(doby_rc, width=1), dbc.Col(html.P(), width=1), # Q4 dbc.Col(parity_qc, width=1), dbc.Col(parity_rc, width=2), ]), html.Br(), dbc.Row([ # Q5 dbc.Col(del_qc, width=1), dbc.Col(del_rc, width=2), # Q6 dbc.Col(edd_qc, width=1), dbc.Col(edd_rc, width=1), dbc.Col(html.P(), width=1), # Q7 dbc.Col(deldate_qc, width=1), dbc.Col(deldate_rc, width=2), # Q7 dbc.Col(tel_qc, width=1), dbc.Col(tel_rc, width=2), ]) ], style={ 'border': '1px solid #319997', 'border-radius': '6px', 'padding': '0.5%', 'padding-bottom': '20px' }), html.Br(), html.Br(), html.Br(), html.Div( [ html.H5('COVID - Test Status', style={'font-weight': 'bold'}), html.Br(), html.Br(), html.Br(), dbc.Row([ # Q9 dbc.Col(vacc_qc, width=1), dbc.Col(vacc_rc, width=2), # Q10 dbc.Col(vacwhich_qc, width=1), dbc.Col(vacwhich1_rc, width=1), dbc.Col(vacwhich2_rc, width=1), # Q11 dbc.Col(vac1date_qc, width=1), dbc.Col(vac1date_rc, width=2), # Q12 dbc.Col(vac2date_qc, width=1), dbc.Col(vac2date_rc, width=2), ]), html.Br(), dbc.Row([ # Q13 dbc.Col(covidtest_qc, width=1), dbc.Col(covidtest_rc, width=2), # Q14 dbc.Col(covidstatus_qc, width=1), dbc.Col(covidstatus_rc, width=2), # Q15 dbc.Col(covswabdate_qc, width=1), dbc.Col(covswabdate_rc, width=2), ]), html.Br(), dbc.Row([ # Q16 dbc.Col(covadmit_qc, width=1), dbc.Col(covadmit_rc, width=2), # Q17 dbc.Col(covadmitdate_qc, width=1), dbc.Col(covadmitdate_rc, width=2), # Q18 dbc.Col(covdischargedate_qc, width=1), dbc.Col(covdischargedate_rc, width=2), ]), html.Br(), html.Br(), ], style={ 'border': '1px solid #319997', 'border-radius': '6px', 'padding': '0.5%', 'padding-bottom': '20px' }), ]), ### Row ### html.Br(), html.Br(), html.Br(), html.Div( style={}, children=[ html.Div( [ html.H5('COVID - Clinical Assessment', style={'font-weight': 'bold'}), html.Br(), html.Br(), html.Br(), dbc.Row([ # Q19 dbc.Col(sentences_qc, width=2), dbc.Col(sentences_rc, width=2), dbc.Col(rwt_qc, width=1), dbc.Col(rwt_rc, width=4), ]), html.Br(), dbc.Row([ # Q20 dbc.Col(covsymp_qc, width=2), dbc.Col(tsym1_rc, width=2), dbc.Col(tsym2_rc, width=2), # 21 dbc.Col(tsym3_rc, width=2), # 22 dbc.Col(tsym4_rc, width=2), ]), ### Row ### html.Br(), dbc.Row([ dbc.Col(covrisksw_qc, width=2), dbc.Col(risksw1_rc, width=2), # Q24 dbc.Col(risksw2_rc, width=2), # Q25 dbc.Col(risksw3_rc, width=2), # Q26 dbc.Col(risksw4_rc, width=2), ]), html.Br(), ### Row ### dbc.Row([ dbc.Col(covrisksb_qc, width=2), # Q27 dbc.Col(risksb1_rc, width=2), # Q28 dbc.Col(risksb2_rc, width=2), # Q29 dbc.Col(risksb3_rc, width=2), # Q30 dbc.Col(risksb4_rc, width=2), ]), html.Br(), ### Row ### dbc.Row([ # Q31 dbc.Col(covrx_qc, width=2), dbc.Col(covrxw1_rc, width=2), # Q32 dbc.Col(covrxw2_rc, width=2), # Q33 dbc.Col(covrxw3_rc, width=2), # Q34 dbc.Col(covrxw4_rc, width=2), ]), html.Br(), ### Row ### dbc.Row([ dbc.Col(covclinassess_qc, width=2), # Q27 dbc.Col(clin1assess1_rc, width=2), # Q28 dbc.Col(clin1assess2_rc, width=2), # Q29 dbc.Col(clin1assess3_rc, width=2), # Q30 dbc.Col(clin1assess4_rc, width=2) ]), html.Br(), dbc.Row([ dbc.Col(labour_qc, width=2), # Q27 dbc.Col(labour_rc, width=2), dbc.Col(fetalconcerns_qc, width=2), # Q29 dbc.Col(fetalconcerns_rc, width=2), ]), html.Br(), dbc.Row([ dbc.Col(fetalheart_qc, width=2), # Q30 dbc.Col(fhr_rc, width=2), ]), ### Row ### # dbc.Col(covfreetext_qc, width=2), # ]), # dbc.Row([ # dbc.Col(covfreetext_rc, width=10), # ]), ], style={ 'border': '1px solid #319997', 'border-radius': '6px', 'padding': '0.5%', 'padding-bottom': '20px' }), html.Br(), html.Div(children=[ html.Div([ html.Button(id='communitytriage_btn_confirm', children='Confirm', n_clicks=0) ], style={ 'margin-right': '10px', 'display': 'inline-block' }), # html.Div([html.A(html.Button(id='communitytriage_btn_confirm', children='Confirm', n_clicks=0), # href='/experiment')], # style={'margin-right': '10px', 'display': 'inline-block'}), html.Div([ html.Button(id='communitytriage_btn_cancel', children='Cancel', n_clicks=0) ], style={'display': 'inline-block'}) ]) ]) ])
import dash import dash_bootstrap_components as dbc import dash_html_components as html app = dash.Dash(external_stylesheets=[dbc.themes.BOOTSTRAP]) card_content_1 = [ dbc.CardHeader("Card header"), dbc.CardBody([ html.H5("Card title", className="card-title"), html.P( "This is some card content that we'll reuse", className="card-text", ), ]), ] card_content_2 = dbc.CardBody([ html.Blockquote( [ html.P("A learning experience is one of those things that says, " "'You know that thing you just did? Don't do that.'"), html.Footer(html.Small("Douglas Adams", className="text-muted")), ], className="blockquote", ) ]) card_content_3 = [ dbc.CardImg(src="./assets/placeholder286x180.png", top=True), dbc.CardBody([